In the experiment, delayed cracks in deep drawing processes of metastable stainless steel SUS304 cylindrical cups were prevented using elevated blank holding force aided by nanolubrication. Besides tensile residual hoop stresses, the elimination of the cracks was also attributed to the change in wall thickening profile along the wavy cup edges. The wall thickening is a result of the high circumferential stress acting in the flange, leading to the high concentration of deformation-induced martensite and high risk of cracks. The amount of increase in wall thickness in the valleys along the edge during the deep drawing process was higher than the peaks at low blank holding force range due to shorter heights. Therefore, the portions of blank equivalent to the valleys were subject to higher holding force during the process, resulting in decrease in degree of wall thickening with increase in height for blank holding force up to 25 kN. However, the wall thickening and the height increased at blank holding force of 28 kN due to the same amount of increase in wall thickness in both valleys and peaks, resulting in a larger contacting area and lower holding force. Therefore, the wall thickness in the valleys sharply increased, and the formation of the cracks persists. Within the crack-free range, that is, from 29 to 31 kN, both the heights and wall thickening decreased. The decrease in frictional force by means of the nanolubrication has facilitated the flow of material into the die, resulting in lower cup height. It also facilitated the flow of materials away from the thick valley regions under the high pressure, resulting in significant decrease in degree of wall thickening. The cracks were prevented. The amount of compression at blank holding force of 32 kN was insufficient to suppress the increase in wall thickening in valleys, resulting in the formation of the cracks again.
Concentrated sunlight that is transmitted by fiber optics has been used for generating electricity, heat, and daylight. On the other hand, multijunction photovoltaic cells provide high efficiency for generating electricity from highly concentrated sunlight. This study deals with designing and simulating a high-efficiency coupler, employing a mathematical model to connect sunlight with fiber optics for multiple applications. The coupler concentrates and distributes irradiated light from a primary concentrator. In this study, a parabolic dish was used as the primary concentrator, a coupler that contains nine components called a compound truncated pyramid and a cone (CTPC), all of which were mounted on a plate. The material of both the CTPC and the plate was BK7 optical glass. Fiber optics cables and multijunction photovoltaic cells were connected to the cylindrical part of the CTPC. The fibers would transmit the light to the building to provide heat and daylight, whereas multijunction photovoltaic cells generate electricity. Theoretical and simulation results showed high performance of the designed coupler. The efficiency of the coupler was as high as 92%, whereas the rim angle of the dish increased to an optimum angle. Distributed sunlight in the coupler increased the flexibility and simplicity of the design, resulting in a system that provided concentrated electricity, heat, and lighting for residential buildings.
In this paper, we propose to use glass optical fibers with a rectangular cross-section for the application in a concentrator photovoltaic and daylighting system (CPVD) due to the unique characteristics of rectangular fibers with the capability to provide a uniform rectangular beam shape and a top-hat profile at the output. A mathematical model of rectangular optical fibers has been formulated in this study for different incident angles, and the results are compared with those of round optical fibers. Furthermore, the performance of the bundle of RGOFs is compared with that of the bundle of round optical fibers via simulation by using the ray-tracing method. The mathematical modelling and numerical simulation have demonstrated that the RGOF has advantages in terms of the improvement in relative transmission and reduction in energy leakage for the transmission through the optical fiber. The simulation result also shows that a higher flux of sunlight can be transmitted via the bundle of RGOFs as compared to the bundle of round optical fibers due to the higher coupling efficiency. The experiment results on the relative transmission in different incident angles for both round optical fibers and RGOFs have validated both the simulation and the mathematical modelling. The beam profile of our fabricated RGOF has also been measured via our laboratory facility. The flexibility test on the fabricated RGOF has been carried out to bend at a radius of 150 mm and twist at 90° at a fiber length of 2.2 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.