Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic.
Highlights d Multi-omics analysis and techniques with NASA's GeneLab platform d The largest cohort of astronaut data to date utilized for analysis d Mitochondrial dysregulation driving spaceflight health risks d NASA Twin Study data validates mitochondrial dysfunction during space missions
Even after a tumor is established, it can early on enter a state of dormancy marked by balanced cell proliferation and cell death. Disturbances to this equilibrium may affect cancer risk, as they may cause the eventual lifetime clinical presentation of a tumor that might otherwise have remained asymptomatic. Previously, we showed that cell death, proliferation, and migration can play a role in shifting this dynamic, making the understanding of their combined influence on tumor development essential. We developed an individual cell-based computer model of the interaction of cancer stem cells and their nonstem progeny to study early tumor dynamics. Simulations of tumor growth show that three basic components of tumor growth-cell proliferation, migration, and death-combine in unexpected ways to control tumor progression and, thus, clinical cancer risk. We show that increased proliferation capacity in nonstem tumor cells and limited cell migration overall lead to space constraints that inhibit proliferation and tumor growth. By contrast, increasing the rate of cell death produces the expected tumor size reduction in the short term, but results ultimately in paradoxical accelerated long-term growth owing to the liberation of cancer stem cells and formation of self-metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.