The length scale of the transition region between a porous layer and its overlying fluid layer is experimentally studied. The experimental setup consists of a rectangular channel, in which a fluid layer flows over a porous bed. Using particle image velocimetry and refractive index matching, two-dimensional velocity measurements in the interfacial region were performed. The thickness of this transition layer, defined by the height below the permeable interface up to which the velocity decreases to the Darcy scale, is measured and compared with the permeability and the matrix grain size. It was observed that the thickness of the transition zone, ␦, is of the order of the grain diameter, and hence, much larger than the square root of the permeability as predicted by previous theoretical studies. The Reynolds number and the fluid height over the porous substrate were found to affect the gradient of the horizontal velocity component at the interfacial region while the length scale of the transition layer remains approximately unchanged. The effect of the porous matrix type has been investigated by utilizing spherical glass beads as well as granulates. Scaling the measured velocities by the interfacial velocity near the uppermost solid matrix resulted in a unique velocity distribution in the case of monodisperse glass beads, hinting that the interfacial velocity represents a proper scaling factor. However, for polydisperse granulate material deviation from this behavior was observed.
Asphaltenes are known to cause severe flow assurance problems in the near-wellbore region of oil reservoirs. Understanding the mechanism of asphaltene deposition in porous media is of great significance for the development of accurate numerical simulators and effective chemical remediation treatments. Here, we present a study of the dynamics of asphaltene deposition in porous media using microfluidic devices. A model oil containing 5 wt % dissolved asphaltenes was mixed with n-heptane, a known asphaltene precipitant, and flowed through a representative porous media microfluidic chip. Asphaltene deposition was recorded and analyzed as a function of solubility, which was directly correlated to particle size and Péclet number. In particular, pore-scale visualization and velocity profiles, as well as three stages of deposition, were identified and examined to determine the important convection-diffusion effects on deposition.
Asphaltenes are components in crude oil known to deposit and interrupt flows in critical regions during oil production, such as the wellbore and transportation pipelines. Chemical dispersants are commonly used to disperse asphaltenes into smaller agglomerates or increase asphaltene stability in solution with the goal of preventing deposition. However, in many cases, these chemical dispersants fail in the field or even worsen the deposition problems in the wellbores. Further understanding of the mechanisms by which dispersants alter asphaltene deposition under dynamic flowing conditions are needed to better understand flow assurance problems. Here, we describe the use of porous media microfluidic devices to evaluate how chemical dispersants change asphaltene deposition. Four commercially used alkyl-phenol model chemical dispersants are tested with model oils flowing through porous media, and the resulting deposition kinetics are visualized at both the matrix-scale and the pore-scale. Interestingly, initial asphaltene deposition worsens in the presence of the tested dispersants, but the mechanism by which plugging and permeability reduction in the porous media varies. The velocity profiles near the deposit are analyzed to further investigate how shear forces affect asphaltene deposition. The deposition tendency is also related to the intermolecular interactions governing the asphaltene-dispersant systems. Furthermore, the model system is extended to a real case. The use of porous media microfluidic devices offers a unique
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.