There is a fundamental concern regarding the prediction of kiwifruit yield based on the concentration of nutrients in the leaf (2–3 months before fruits harvesting). For this purpose, the current study was designed to employ an artificial neural network (ANN) to evaluate the kiwi yield of Hayward cultivar. In this regard, 31 kiwi orchards (6–7 years old) in different parts of Rudsar, Guilan Province, Iran, with 101 plots (three trees in every plot) were selected. The complete leaves of branches with fruits were harvested, and the concentration of nitrogen, potassium, calcium, and magnesium measured. After fruit harvesting in late November, the fruit yield of each plot was evaluated along with the fresh and dry weights of the fruit. The ANN analyses were carried out using a multi-layer perceptron with the Langburge-Marquardt training algorithm. Using calcium (Ca) as input data (Ca-model) was more accurate than using nitrogen (N-model). The maximum R2 and the lowest root mean square error was obtained when all nutrients and related ratios were considered as input variables. Since the difference between the proposed model and the model fitted by the calcium variable (Ca-model) was only about 6%, the Ca-model is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.