Plants are a major source of food for the world population. Plant diseases contribute to production loss, which can be tackled with continuous monitoring. Manual plant disease monitoring is both laborious and error-prone. Early detection of plant diseases using computer vision and artificial intelligence (AI) can help to reduce the adverse effects of diseases and also overcome the shortcomings of continuous human monitoring. In this work, we propose the use of a deep learning architecture based on a recent convolutional neural network called EfficientNet on 18,161 plain and segmented tomato leaf images to classify tomato diseases. The performance of two segmentation models i.e., U-net and Modified U-net, for the segmentation of leaves is reported. The comparative performance of the models for binary classification (healthy and unhealthy leaves), six-class classification (healthy and various groups of diseased leaves), and ten-class classification (healthy and various types of unhealthy leaves) are also reported. The modified U-net segmentation model showed accuracy, IoU, and Dice score of 98.66%, 98.5%, and 98.73%, respectively, for the segmentation of leaf images. EfficientNet-B7 showed superior performance for the binary classification and six-class classification using segmented images with an accuracy of 99.95% and 99.12%, respectively. Finally, EfficientNet-B4 achieved an accuracy of 99.89% for ten-class classification using segmented images. It can be concluded that all the architectures performed better in classifying the diseases when trained with deeper networks on segmented images. The performance of each of the experimental studies reported in this work outperforms the existing literature.
Plants are a major source of food for the world population. Plant diseases contribute to production loss, which can be tackled with continuous monitoring. Manual plant disease monitoring is both laborious and error-prone. Early detection of plant diseases using computer vision and artificial intelligence (AI) can help to reduce the adverse effects of diseases and also helps to overcome the shortcomings of continuous human monitoring. In this study, we have extensively studied the performance of the different state-of-the-art convolutional neural networks (CNNs) classification network architectures i.e. ResNet18, MobileNet, DenseNet201, and InceptionV3 on 18,162 plain tomato leaf images to classify tomato diseases. The comparative performance of the models for the binary classification (healthy and unhealthy leaves), six-class classification (healthy and various groups of diseased leaves), and ten-class classification (healthy and various types of unhealthy leaves) are also reported. InceptionV3 showed superior performance for the binary classification using plain leaf images with an accuracy of 99.2%. DenseNet201 also outperform for six-class classification with an accuracy of 97.99%. Finally, DenseNet201 achieved an accuracy of 98.05% for ten-class classification. It can be concluded that deep architectures performed better at classifying the diseases for the three experiments. The performance of each of the experimental studies reported in this work outperforms the existing literature.
Umpire decisions can greatly affect the outcome of a cricket game. When there is doubt about the umpire's call for a decision, a decision review system (DRS) may be brought into play by a batsman or bowler to validate the decision. Recently, the latest technologies, including Hotspot, Hawk-eye, and Snickometer, have been employed when there is doubt among the on-field umpire, batsman, or bowlers. This research is a step forward in gaging the true class of a snick generated from the contact of the cricket ball with either (i) the bat, (ii) gloves, (iii) pad, or (iv) a combination of bat and pad. Preprocessing included noise removal from the snick audios using the Audacity program.Machine learning-based classification is achieved by training neural networks with audio features of the snick. A support vector machine was employed to enhance the classification system. Twenty-one features comprising time and frequency domain characteristics were compiled. After one-way analysis of variance was employed and multicomparison analysis was performed, a set of seventeen features was selected and utilized to increase the accuracy of the proposed DRS.The system was trained on indigenous snick data gathered by ourselves and then tested for real cricket snick scenarios.The system achieves a classification rate of 98.3 percent for the self-collected data while presenting an accuracy of 85.7 percentage for the real cricket snick scenarios. The research also developed a dataset of snick audios comprising 132 signals for the four categories to aid researchers working in the same field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.