In the study of quantum vacuum energy and the Casimir effect, it is desirable to model the conductor by a potential of the form [Formula: see text]. This “soft wall” model was proposed so as to avoid the violation of the principle of virtual work under ultraviolet regularization that occurs for the standard Dirichlet wall. The model was formalized for a massless scalar field, and the expectation value of the stress tensor has been expressed in terms of the reduced Green function of the equation of motion. In the limit of interest, [Formula: see text], which approximates a Dirichlet wall, a closed-form expression for the reduced Green function cannot be found, so piecewise approximations incorporating the perturbative and WKB expansions of the Green function, along with interpolating splines in the region where neither expansion is valid, have been developed. After reviewing this program, in this paper, we apply the scheme to the wall with [Formula: see text] and use it to compute the renormalized energy density and pressure inside the cavity for various values of the conformal parameter. The consistency of the results is verified by comparison to their numerical counterparts and verification of the trace anomaly and the conservation law. Finally, we use the approximation scheme to reproduce the energy density inside the quadratic wall, which was previously calculated exactly but with some uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.