Over the last two decades, the machine learning and related communities have conducted numerous studies to improve the performance of a single classifier by combining several classifiers generated from one or more learning algorithms. Bagging and Boosting are the most representative examples of algorithms for generating homogeneous ensembles of classifiers. However, Stacking has become a commonly used technique for generating ensembles of heterogeneous classifiers since Wolpert presented his study entitled Stacked Generalization in 1992. Studies that have addressed the Stacking issue demonstrated that when selecting base learning algorithms for generating classifiers that are members of the ensemble, their learning parameters and the learning algorithm for generating the meta-classifier were critical issues. Most studies on this topic manually select the appropriate combination of base learning algorithms and their learning parameters. However, some other methods use automatic methods to determine good Stacking configurations instead of starting from these strong initial assumptions. In this paper, we describe Stacking and its variants and present several examples of application domains.
Knowledge about computer users is very beneficial for assisting them, predicting their future actions or detecting masqueraders. In this paper, a new approach for creating and recognizing automatically the behavior profile of a computer user is presented. In this case, a computer user behavior is represented as the sequence of the commands she/he types during her/his work. This sequence is transformed into a distribution of relevant subsequences of commands in order to find out a profile that defines its behavior. Also, because a user profile is not necessarily fixed but rather it evolves/changes, we propose an evolving method to keep up to date the created profiles using an Evolving Systems approach. In this paper, we combine the evolving classifier with a trie-based user profiling to obtain a powerful self-learning online scheme. We also develop further the recursive formula of the potential of a data point to become a cluster center using cosine distance, which is provided in the Appendix. The novel approach proposed in this paper can be applicable to any problem of dynamic/evolving user behavior modeling where it can be represented as a sequence of actions or events. It has been evaluated on several real data streams.
Environments equipped with intelligent sensors can be of much help if they can recognize the actions or activities of their users. If this activity recognition is done automatically, it can be very useful for different tasks such as future action prediction, remote health monitoring, or interventions. Although there are several approaches for recognizing activities, most of them do not consider the changes in how a human performs a specific activity. We present an automated approach to recognize daily activities from the sensor readings of an intelligent home environment. However, as the way to perform an activity is usually not fixed but it changes and evolves, we propose an activity recognition method based on Evolving Fuzzy Systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.