Background: Findings from animal and epidemiological research support the potential neuroprotective benefits from healthy diets. However, to establish diet-neuroprotective causal relations, evidence from dietary intervention studies is needed. NU-AGE is the first multicenter intervention assessing whether a diet targeting health in aging can counteract the age-related physiological changes in different organs, including the brain. In this study, we specifically investigated the effects of NU-AGE's dietary intervention on age-related cognitive decline.Materials and Methods: NU-AGE randomized trial (NCT01754012, clinicaltrials.gov) included 1279 relatively healthy older-adults, aged 65–79 years, from five European centers. Participants were randomly allocated into two groups: “control” (n = 638), following a habitual diet; and, “intervention” (n = 641), given individually tailored dietary advice (NU-AGE diet). Adherence to the NU-AGE diet was measured over follow-up, and categorized into tertiles (low, moderate, high). Cognitive function was ascertained at baseline and at 1-year follow-up with the Consortium to Establish a Registry for Alzheimer's Disease (CERAD)-Neuropsychological Battery and five additional domain-specific single cognitive tests. The raw scores from the CERAD subtests [excluding the Mini-Mental State Examination (MMSE)] and the single tests were standardized into Z-scores. Global cognition (measured with MMSE and CERAD-total score), and five cognitive domains (perceptual speed, executive function, episodic memory, verbal abilities, and constructional praxis) were created. Cognitive changes as a function of the intervention were analyzed with multivariable mixed-effects models.Results: After the 1-year follow-up, 571 (89.1%) controls and 573 (89.8%) from the intervention group participated in the post-intervention assessment. Both control and intervention groups showed improvements in global cognition and in all cognitive domains after 1 year, but differences in cognitive changes between the two groups were not statistically significant. However, participants with higher adherence to the NU-AGE diet showed statistically significant improvements in global cognition [β 0.20 (95%CI 0.004, 0.39), p-value = 0.046] and episodic memory [β 0.15 (95%CI 0.02, 0.28), p-value = 0.025] after 1 year, compared to those adults with lower adherence.Discussion: High adherence to the culturally adapted, individually tailored, NU-AGE diet could slow down age-related cognitive decline, helping to prevent cognitive impairment and dementia.
Mediterranean diet has been proposed to promote healthy aging, but its effects on aging biomarkers have been poorly investigated. We evaluated the impact of a 1-year Mediterranean-like diet in a pilot study including 120 elderly healthy subjects from the NU-AGE study (60 Italians, 60 Poles) by measuring the changes in their epigenetic age, assessed by Horvath's clock. We observed a trend towards epigenetic rejuvenation of participants after nutritional intervention. The effect was statistically significant in the group of Polish females and in subjects who were epigenetically older at baseline. A genome-wide association study of epigenetic age changes after the intervention did not return significant (adjusted p value < 0.05) loci. However, we identified small-effect alleles (nominal p value < 10-4), mapping in genes enriched in pathways related to energy metabolism, regulation of cell cycle, and of immune functions. Together, these findings suggest that Mediterranean diet can promote epigenetic rejuvenation but with country-, sex-, and individual-specific effects, thus highlighting the need for a personalized approach to nutritional interventions.
Changes in the composition and proportions of the gut microbiota may be associated with numerous diseases, including cognitive impairment. Over the recent years, the growing interest in this relation is observed, but there are still many unknowns, especially in the elderly. To the best of our knowledge, this is the first work that synthesizes and critically evaluates existing evidence on the possible association between human gut microbiota and cognitive function in the elderly. For this purpose, comprehensive literature searches were conducted using the electronic databases PubMed, Google Scholar, and ScienceDirect. The gut microbiota of cognitively healthy and impaired elderly people may differ in the diversity and abundance of individual taxes, but specific taxes cannot be identified. However, some tendencies to changing the Firmicutes/Bacteroidetes ratio can be identified. Currently, clinical trials involving probiotics, prebiotics, and synbiotics supplementation have shown that there are premises for the claim that these factors can improve cognitive functions, however there is no single intervention beneficial to the elderly population. More reliable evidence from large-scale, long-period RCT is needed. Despite proposing several potential mechanisms of the gut microbiota’s influence on the cognitive function impairment, prospective research on this topic is extremely difficult to conduct due to numerous confounding factors that may affect the gut microbiota. Heterogeneity of research outcomes impairs insight into these relations.
Background: The purpose of this study was to evaluate the traits of orthorexia nervosa (ON) and its relation to body composition and anthropometric indices among elite athletes. Methods: We studied 273 (125 female, 148 male) competitive athletes. ON was assessed with the self-administered ORTO-15 questionnaire. Total body composition was determined using dual-energy X-ray absorptiometry (DXA). Results: The ORTO-15 score was independent of sex, type of effort or age. The ORTO-15 score was related to: total body mass (TBM) (p = 0.037; R = 0.170), body mass index (BMI) (p = 0.022; R = 0.187), bone mineral content (BMC) (p = 0.035; R = 0.172), lean soft tissue (p = 0.026; R = 0.182) and visceral adipose tissue (VAT) (p = 0.007; R = 0.255) in the male; BMI (p = 0.045; R = 0.412) and BMC (p = 0.012; R = 0.506) in weight-dependent male athletes. There was no relationship between ORTO-15 score and body composition in the total study group and subgroup of female athletes. In female athletes, ON tendencies were related to the weekly training time (p = 0.039), but in sprint and high-intensity intermittent efforts subgroup exclusively. Conclusions: Factors related to ON tendencies concerned exclusively BMI and body composition in male, and the weekly training time in female athletes. The results from this study demonstrate that a significant percentage of athletes, irrespective of sex, age, type of sport or hours of training per week, may manifest traits of orthorexia nervosa.
Background Maintenance of high physical performance during aging might be supported by an adequate dietary intake of niacin, vitamins B-6 and B-12, and folate because these B vitamins are involved in multiple processes related to muscle functioning. However, not much is known about the association between dietary intake of these B vitamins and physical performance. Objectives The objectives of this study were to investigate the association between dietary intake of niacin, vitamins B-6 and B-12, and folate and physical performance in older adults and to explore mediation by niacin status and homocysteine concentrations. Methods We used baseline data from the New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE) trial, which included n = 1249 healthy older adults (aged 65–79 y) with complete data on dietary intake measured with 7-d food records and questionnaires on vitamin supplement use and physical performance measured with the short physical performance battery and handgrip dynamometry. Associations were assessed by adjusted linear mixed models. Results Intake of vitamin B-6 was related to lower chair rise test time [β: –0.033 ± 0.016 s (log); P = 0.043]. Vitamin B-6 intake was also significantly associated with handgrip strength, but for this association, a significant interaction effect between vitamin B-6 intake and physical activity level was found. In participants with the lowest level of physical activity, higher intake of vitamin B-6 tended to be associated with greater handgrip strength (β: 1.5 ± 0.8 kg; P = 0.051), whereas in participants in the highest quartile of physical activity, higher intake was associated with lower handgrip strength (β: –1.4 ± 0.7 kg; P = 0.041). No evidence was found for an association between intake of niacin, vitamin B-12, or folate and physical performance or for mediation by niacin status or homocysteine concentrations. Conclusions Vitamin B-6 intake was associated with better chair rise test time in a population of European healthy older adults and also with greater handgrip strength in participants with low physical activity only. Homocysteine concentrations did not mediate these associations. The NU-AGE trial was registered at clinicaltrials.gov as NCT01754012.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.