One of the main theories concerning the mechanism of action of antidepressant drugs (ADs) is based on the notion that the neurochemical background of depression involves an impairment of central noradrenergic transmission with a concomitant decrease of the norepinephrine (NE) in the synaptic gap. Many ADs increase synaptic NE availability by inhibition of the reuptake of NE. Using mice lacking NE transporter (NET À/À ) we examined their baseline phenotype as well as the response in the forced swim test (FST) and in the tail suspension test (TST) upon treatment with ADs that display different pharmacological profiles. In both tests, the NET À/À mice behaved like wild-type (WT) mice acutely treated with ADs. Autoradiographic studies showed decreased binding of the b-adrenergic ligand [ 3 H]CGP12177 in the cerebral cortex of NET À/À mice, indicating the changes at the level of b-adrenergic receptors similar to those obtained with ADs treatment. The binding of [ 3 H]prazosin to a 1 -adrenergic receptors in the cerebral cortex of NET À/À mice was also decreased, most probably as an adaptive response to the sustained elevation of extracellular NE levels observed in these mice. A pronounced NET knockout-induced shortening of the immobility time in the TST (by ca 50%) compared to WT mice was not reduced any further by NET-inhibiting ADs such as reboxetine, desipramine, and imipramine. Citalopram, which is devoid of affinity for the NET, exerted a significant reduction of immobility time in the NET À/À mice. In the FST, reboxetine, desipramine, imipramine, and citalopram administered acutely did not reduce any further the immobility time shortened by NET knockout itself (ca 25%); however, antidepressant-like action of repeatedly (7 days) administered desipramine was observed in NET À/À mice, indicating that the chronic presence of this drug may also affect other neurochemical targets involved in the behavioral reactions monitored by this test. From the present study, it may be concluded that mice lacking the NET may represent a good model of some aspects of depression-resistant behavior, paralleled with alterations in the expression of adrenergic receptors, which result as an adaptation to elevated levels of extracellular NE.
Evidence for hetero-oligomerization has recently been provided for various G protein-coupled receptors. In this paper, we have studied the possibility that dopamine D(1) and D(2) receptors physically interact with each other. Human dopamine D(1) and D(2) receptors were fluorescently tagged with derivatives of green fluorescence protein and transiently coexpressed in the membrane of human embryonic kidney 293 cells. Using qualitative fluorescence spectroscopy, as well as quantitative Förster resonance energy transfer (FRET) analysis, performed in a single cell by confocal microscopy and fluorescence lifetime microscopy, we show that dopamine D(1) and D(2) receptors can form hetero-oligomers in the plasma membrane. The degree of receptor protein-protein interaction is significantly enhanced by concomitant addition of D(1) and D(2) receptor subtype-specific agonists. Our investigations extend biochemical and electrophysiological studies and give insights into the regulation and synergistic mode of operation of dopamine receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.