An increasing amount of sewage sludge requires reasonable management, whereas its storage might be environmentally hazardous. Due to the organic matter and nutrient presence in sediments, it may be used as organic fertilizer. However, beyond the valuable contests, sewage sludge can also contain toxic or dangerous ingredients like heavy metals. Therefore, there is a need to develop methods for rapid assessment of sediment ecotoxicity that will determine its possible applicability in agriculture. The Biolog® EcoPlate enables the metabolic profile diversity evaluation of microbial populations in environmental samples, which reflects the state of their activity. It is regarded as a modern technology that by means of biological properties allows quick characterization of the ecological status of environmental samples, such as sewage sludge.
Waste exogenous organic matter, including spent mushroom substrate (SMS) and chicken manure (CM), can be used as the basis of a soil-improving cropping system in sustainable agriculture. However, there is—as yet—a lack of information about important quality indicators such as the fungal community relative abundance, structure and biodiversity in soils treated with these additives. In this study, the responses of the soil fungal community composition and mycobiome diversity to SMS and CM application compared to the control soil were evaluated using a combination of the following molecular approaches: quantitative polymerase chain reactions, denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphism, and next-generation sequencing. The most abundant phylum for both treatments was Ascomycota, followed by Basidiomycota. The application of SMS and CM increased the abundance of fungi, including Tremellomycetes and Pezizomycetes for the SMS additive, while the Mortierellomycetes, Pezizomycetes, and Leotiomycetes levels increased after CM addition. SMS and CM beneficially reduced the relative abundance of several operational taxonomic units (OTUs) which are potential crop pathogens. The results provide a novel insight into the fungal community associated with organic additives, which should be beneficial in the task of managing the soil mycobiome as well as crop protection and productivity.
Arabinogalactan proteins (AGPs) are cell components implicated in plant-microbe interactions. Despite the significance of AGPs in response to stress factors, their distribution during development of fungal disease in fruit is unknown. In our work, in situ analysis of AGP arrangement in fruit inoculated with Penicillium spinulosum during the consecutive days of infection development was carried out. For immunolocalization of AGPs, samples were incubated with JIM13, MAC207, LM2, and LM14 antibodies recognizing the AGP carbohydrate moieties. To analyse cell walls without proper action of AGP, an experiment with β-glucosyl Yariv reagent specifically binding AGPs was performed. The results showed an increase of signal fluorescence in the fruit after 16 days of fungal disease. Higher amounts of the examined epitopes were observed in the infection-altered sites of the fruit, in close vicinity to a surface filled by fungal spores. The results indicate that the Yariv reagent treatment induced progress of the fungal disease. Changes in the AGP presence during the fungal disease confirmed their involvement in defence against pathogen attack in fruit.
The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 microplates (BiologTM) method is traditionally used for bacteria identification and the evaluation of their ability to utilize different carbon substrates. However, to the best of our knowledge, there is no reports concerning the use of this technical tool to determine fungicides resistance of the Fusarium isolates. For this reason, the objectives of this study are to develop a fast method for Fusarium resistance to fungicides detection and to validate the effectiveness approach between both traditional hole-plate and MT2 microplates assays. In presented study MT2 microplate-based assay was evaluated for potential use as an alternative resistance detection method. This was carried out using three commercially available fungicides, containing following active substances: triazoles (tebuconazole), benzimidazoles (carbendazim) and strobilurins (azoxystrobin), in six concentrations (0, 0.0005, 0.005, 0.05, 0.1, 0.2%), for nine selected Fusarium isolates. In this study, the particular concentrations of each fungicides was loaded into MT2 microplate wells. The wells were inoculated with the Fusarium mycelium suspended in PM4-IF inoculating fluid. Before inoculation the suspension was standardized for each isolates into 75% of transmittance. Traditional hole-plate method was used as a control assay. The fungicides concentrations in control method were the following: 0, 0.0005, 0.005, 0.05, 0.5, 1, 2, 5, 10, 25, and 50%. Strong relationships between MT2 microplate and traditional hole-plate methods were observed regarding to the detection of Fusarium resistance to various fungicides and their concentrations. The tebuconazole was most potent, providing increased efficiency in the growth inhibition of all tested isolates. Almost all among tested isolates were resistant to azoxystrobin-based fungicide. Overall, the MT2 microplates method was effective and timesaving, alternative method for determining Fusarium resistance/sensitivity to fungicides, compering to traditional hole-plate approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.