The exploitation of natural photosynthetic enzymes in semi-artificial devices constitutes an attractive and potentially sustainable route for the conversion of solar energy into electricity and solar fuels. However, the stability of photosynthetic proteins after incorporation in a biohybrid architecture typically limits the operational lifetime of biophotoelectrodes to a few hours. Here, we demonstrate ways to greatly enhance the stability of a mesoporous electrode coated with the RC-LH1 photoprotein from Rhodobacter sphaeroides. By preserving electron transfer pathways, we extended operation under continuous high-light to 33 days, and operation after storage to over two years. Coupled with large photocurrents that reached peak values of 4.6 mA cm À 2 , the optimized biophotoelectrode produced a cumulative output of 86 C cm À 2 , the largest reported performance to date. Our results demonstrate that the factor limiting stability is the architecture surrounding the photoprotein, and that biohybrid sensors and photovoltaic devices with operational lifetimes of years are feasible.
Die Nutzung natürlicher photosynthetischer Enzyme in biohybriden Anwendungen stellt eine attraktive und potenziell nachhaltige Möglichkeit zur Umwandlung von solarer Energie in Elektrizität und Brennstoffe dar. Jedoch begrenzt die Stabilität von photosynthetisch aktiven Proteinen nach der Implementierung in biohybride Anwendungsdesigns die operative Lebensdauer von Biophotoelektroden auf bisher wenige Stunden. In dieser Publikation demonstrieren wir, wie sich die Stabilität einer mesoporösen Elektrode, welche mit dem Photoprotein RC-LH1 aus Rhodobacter sphaeroides beschichtet ist, erheblich steigern lässt. Durch die Aufrechterhaltung der Elektronenübertragungswege konnte die operative Lebensdauer unter Dauerlicht auf 33 Tage gesteigert werden und die operative Funktionalität nach einer Lagerung über mehr zwei Jahre hinweg demonstriert werden. Kombiniert mit hohen Photoströmen, die Spitzenwerte von 4.6 mA cm À 2 erreichten, erzeugte die optimierte Biophotoelektrode eine kumulative Leistung von 86 C cm À 2 , die höchste bisher berichtete Leistung für diese Art von Elektroden. Unsere Ergebnisse zeigen, dass der Faktor, welcher die Stabilität einschränkt, die Architektur der Struktur ist, die das Photoprotein umgibt, sowie das entsprechende biohybride Sensoren und photovoltaische Geräte mit einer Betriebsdauer von mehreren Jahren möglich sind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.