Acute lymphoblastic leukemia (ALL) is the most common malignancy among children. Despite the enormous progress in ALL therapy, resulting in achieving a 5-year survival rate of up to 90%, the ambitious goal of reaching a 100% survival rate is still being pursued. A typical ALL treatment includes three phases: remission induction and consolidation and maintenance, preceded by a prednisone prephase. Poor prednisone response (PPR) is defined as the presence of ≥1.0 × 109 blasts/L in the peripheral blood on day eight of therapy and results in significantly frequent relapses and worse outcomes. Hence, identifying risk factors of steroid resistance and finding methods of overcoming that resistance may significantly improve patients’ outcomes. A mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK-ERK) pathway seems to be a particularly attractive target, as its activation leads to steroid resistance via a phosphorylating Bcl-2-interacting mediator of cell death (BIM), which is crucial in the steroid-induced cell death. Several mutations causing activation of MAPK-ERK were discovered, notably the interleukin-7 receptor (IL-7R) pathway mutations in T-cell ALL and rat sarcoma virus (Ras) pathway mutations in precursor B-cell ALL. MAPK-ERK pathway inhibitors were demonstrated to enhance the results of dexamethasone therapy in preclinical ALL studies. This report summarizes steroids’ mechanism of action, resistance to treatment, and prospects of steroids therapy in pediatric ALL.
The view of paediatric cancer as a genetic disease arises as genetic research develops. Germline mutations in cancer predisposition genes have been identified in about 10% of children. Paediatric cancers are characterized by heterogeneity in the types of genetic alterations that drive tumourigenesis. Interactions between germline and somatic mutations are a key determinant of cancer development. In 40% of patients, the family history does not predict the presence of inherited cancer predisposition syndromes and many cases go undetected. Paediatricians should be aware of specific symptoms, which highlight the need of evaluation for cancer syndromes. The quickest possible identification of such syndromes is of key importance, due to the possibility of early detection of neoplasms, followed by presymptomatic genetic testing of relatives, implementation of appropriate clinical procedures (e.g., avoiding radiotherapy), prophylactic surgical resection of organs at risk, or searching for donors of hematopoietic stem cells. Targetable driver mutations and corresponding signalling pathways provide a novel precision medicine strategy.Therefore, there is a need for multi-disciplinary cooperation between a paediatrician, an oncologist, a geneticist, and a psychologist during the surveillance of families with an increased cancer risk. This review aimed to emphasize the role of cancer-predisposition gene diagnostics in the genetic surveillance and medical care in paediatric oncology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.