Multiword expressions (MWEs) are known as a "pain in the neck" for NLP due to their idiosyncratic behaviour. While some categories of MWEs have been addressed by many studies, verbal MWEs (VMWEs), such as to take a decision, to break one's heart or to turn off, have been rarely modelled. This is notably due to their syntactic variability, which hinders treating them as "words with spaces". We describe an initiative meant to bring about substantial progress in understanding, modelling and processing VMWEs. It is a joint effort, carried out within a European research network, to elaborate universal terminologies and annotation guidelines for 18 languages. Its main outcome is a multilingual 5-millionword annotated corpus which underlies a shared task on automatic identification of VMWEs. This paper presents the corpus annotation methodology and outcome, the shared task organisation and the results of the participating systems.
Abstract.A method of error-tolerant lookup in a finite-state lexicon is described, as well as its application to automatic spelling correction. We compare our method to the algorithm by K. Oflazer [14]. While Oflazer's algorithm searches for all possible corrections of a misspelled word that are within a given similarity threshold, our approach is to retain only the most similar corrections (nearest neighbours), reducing dynamically the search space in the lexicon, and to reach the first correction as soon as possible.
Multiword expressions can have both idiomatic and literal occurrences. For instance pulling strings can be understood either as making use of one’s influence, or literally. Distinguishing these two cases has been addressed in linguistics and psycholinguistics studies, and is also considered one of the major challenges in MWE processing. We suggest that literal occurrences should be considered in both semantic and syntactic terms, which motivates their study in a treebank. We propose heuristics to automatically pre-identify candidate sentences that might contain literal occurrences of verbal VMWEs, and we apply them to existing treebanks in five typologically different languages: Basque, German, Greek, Polish and Portuguese. We also perform a linguistic study of the literal occurrences extracted by the different heuristics. The results suggest that literal occurrences constitute a rare phenomenon. We also identify some properties that may distinguish them from their idiomatic counterparts. This article is a largely extended version of Savary and Cordeiro (2018).
Because most multiword expressions (MWEs), especially verbal ones, are semantically non-compositional, their automatic identification in running text is a prerequisite for semantically-oriented downstream applications. However, recent developments, driven notably by the PARSEME shared task on automatic identification of verbal MWEs, show that this task is harder than related tasks, despite recent contributions both in multilingual corpus annotation and in computational models. In this paper, we analyse possible reasons for this state of affairs. They lie in the nature of the MWE phenomenon, as well as in its distributional properties. We also offer a comparative analysis of the state-of-the-art systems, which exhibit particularly strong sensitivity to unseen data. On this basis, we claim that, in order to make strong headway in MWE identification, the community should bend its mind into coupling identification of MWEs with their discovery, via syntactic MWE lexicons. Such lexicons need not necessarily achieve a linguistically complete modelling of MWEs' behavior, but they should provide minimal morphosyntactic information to cover some potential uses, so as to complement existing MWE-annotated corpora. We define requirements for such a minimal NLP-oriented lexicon, and we propose a roadmap for the MWE community driven by these requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.