Type 2 diabetes mellitus (T2DM) is a complex, chronic and progressive metabolic disease, which is characterized by relative insulin deficiency, insulin resistance, and high glucose levels in blood. Esteemed published articles and epidemiological data exhibit an increased risk of developing Alzheimer’s disease (AD) in diabetic pateints. Metformin is the most frequently used oral anti-diabetic drug, which apart from hypoglycaemic activity, improves serum lipid profiles, positively influences the process of haemostasis, and possesses anti-inflammatory properties. Recently, scientists have put their efforts in establishing metformin’s role in the treatment of neurodegenerative diseases, such as AD, amnestic mild cognitive impairment and Parkinson’s disease. Results of several clinical studies confirm that long term use of metformin in diabetic patients contributes to better cognitive function, compared to participants using other anti-diabetic drugs. The exact mechanism of metformin’s advantageous activity in AD is not fully understood, but scientists claim that activation of AMPK-dependent pathways in human neural stem cells might be responsible for the neuroprotective activity of metformin. Metformin was also found to markedly decease Beta-secretase 1 (BACE1) protein expression and activity in cell culture models and in vivo, thereby reducing BACE1 cleavage products and the production of Aβ (β-amyloid). Furthermore, there is also some evidence that metformin decreases the activity of acetylcholinesterase (AChE), which is responsible for the degradation of acetylcholine (Ach), a neurotransmitter involved in the process of learning and memory. In regard to the beneficial effects of metformin, its anti-inflammatory and anti-oxidative properties cannot be omitted. Numerous in vitro and in vivo studies have confirmed that metformin ameliorates oxidative damage.
Apart from using as radiopharmaceuticals, iminodiacetic acid derivatives, after complexation with gadolinium, have been also tested as MRI CAs (magnetic resonance imaging contrast agents) since they show high affinity to hepatocytes and therefore provide high-resolution MRI of the liver. The purpose of this study was to evaluate the biocompatibility of four gadolinium complexes with iminodiacetic acid (IDA) derivatives differing in substituent in aromatic ring by estimating their influence on plasma hemostasis, integrity of erythrocyte membrane, and toxicity towards human umbilical vein endothelial cells (HUVECs). The influence of gadolinium-based CAs on plasma hemostasis was evaluated by measuring PT (prothrombin time), APTT (activated partial tromboplastin time), and TT (thrombin time). The effects of tested compounds on RBCs (Red Blood Cells) were assessed using hemolysis assay and microscopy studies. The influence of gadolinium complexes on the barrier properties of HUVECs was assessed by means of real-time method based on the measurements of the impedance changes of the cells. Gadolinium complexes did not affect significantly PT and TT. APTT measurements revealed significant prolongation in the presence of all tested gadolinium complexes at the concentration higher than 0.5 μmol/mL. Hemolysis assay showed that compounds with alkyl substituents in benzene ring without halogen atom (1-3) do not exert unfavorable effect on the integrity of erythrocyte membrane over the entire concentration range. All gadolinium complexes at 1.0 μmol/mL contribute to the decrease in HUVEC viability and integrity. To conclude, the study describes biocompatibility studies of gadolinium-based CAs, provides additional insight into their potential toxicity associated with systemic administration, and underscores the necessity for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.