Ribonucleases (RNases) play a critical role in RNA processing and degradation by hydrolyzing phosphodiester bonds (exo- or endonucleolytically). Many RNases that cut RNA internally exhibit substrate specificity, but their target sites are usually limited to one or a few specific nucleotides in single-stranded RNA and often in a context of a particular three-dimensional structure of the substrate. Thus far, no RNase counterparts of restriction enzymes have been identified which could cleave double-stranded RNA (dsRNA) in a sequence-specific manner. Here, we present evidence for a sequence-dependent cleavage of long dsRNA by RNase Mini-III from Bacillus subtilis (BsMiniIII). Analysis of the sites cleaved by this enzyme in limited digest of bacteriophage Φ6 dsRNA led to the identification of a consensus target sequence. We defined nucleotide residues within the preferred cleavage site that affected the efficiency of the cleavage and were essential for the discrimination of cleavable versus non-cleavable dsRNA sequences. We have also determined that the loop α5b-α6, a distinctive structural element in Mini-III RNases, is crucial for the specific cleavage, but not for dsRNA binding. Our results suggest that BsMiniIII may serve as a prototype of a sequence-specific dsRNase that could possibly be used for targeted cleavage of dsRNA.
Ribonucleases (RNases) are valuable tools applied in the analysis of RNA sequence, structure and function. Their substrate specificity is limited to recognition of single bases or distinct secondary structures in the substrate. Currently, there are no RNases available for purely sequence-dependent fragmentation of RNA. Here, we report the development of a new enzyme that cleaves the RNA strand in DNA–RNA hybrids 5 nt from a nonanucleotide recognition sequence. The enzyme was constructed by fusing two functionally independent domains, a RNase HI, that hydrolyzes RNA in DNA–RNA hybrids in processive and sequence-independent manner, and a zinc finger that recognizes a sequence in DNA–RNA hybrids. The optimization of the fusion enzyme’s specificity was guided by a structural model of the protein-substrate complex and involved a number of steps, including site-directed mutagenesis of the RNase moiety and optimization of the interdomain linker length. Methods for engineering zinc finger domains with new sequence specificities are readily available, making it feasible to acquire a library of RNases that recognize and cleave a variety of sequences, much like the commercially available assortment of restriction enzymes. Potentially, zinc finger-RNase HI fusions may, in addition to in vitro applications, be used in vivo for targeted RNA degradation.
The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.
Adenosine deaminases (ADARs) catalyze the deamination of adenosine to inosine, also known as A-to-I editing, in RNA. Although A-to-I editing occurs widely across animals and is well studied, new biological roles are still being discovered. Here, we study the role of A-to-I editing in early zebrafish development. We demonstrate that Adar, the zebrafish orthologue of mammalian ADAR1, is essential for establishing the antero-posterior and dorso-ventral axes and patterning. Genome-wide editing discovery reveals pervasive editing in maternal and the earliest zygotic transcripts, the majority of which occurred in the 3’-UTR. Interestingly, transcripts implicated in gastrulation as well as dorso-ventral and antero-posterior patterning are found to contain multiple editing sites. Adar knockdown or overexpression affect gene expression by 12 hpf. Analysis of adar-/- zygotic mutants further reveals that the previously described role of Adar in mammals in regulating the innate immune response is conserved in zebrafish. Our study therefore establishes distinct maternal and zygotic functions of RNA editing by Adar in embryonic patterning along the zebrafish antero-posterior and dorso-ventral axes, and in the regulation of the innate immune response, respectively.
ObjectiveType C2H2 zinc fingers bind a variety of substrates, specific sequences in the double-stranded DNA counting among them. Engineering efforts led to the discovery of a set of general rules that enable obtaining zinc fingers modules that bind to almost any given sequence. The objective of this work was to determine an analogical set of rules for the binding of specific sequences in DNA–RNA hybrids using directed evolution of ZfQQR zinc finger. The target regions for evolution included the amino acid residues that directly interact with the substrate and linkers between the zinc finger modules.ResultsThe directed evolution was performed using selection based on biopanning of phage-displayed libraries of randomized regions in the ZfQQR zinc finger. The applied strategy of randomization of the middle module of the zinc finger along with input library bias and materials used for biopanning hindered the selection of the modules with altered specificity. However, the directed evolution of the linker sequence between modules enabled selection of variants with improved selectivity towards DNA–RNA hybrids in the presence of double-stranded DNA in comparison to the original ZfQQR. This confirms the necessity of linker optimization between modules in zinc finger domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.