Background: The main source of vitamin D is skin synthesis, which depends on sunlight exposure. During the pandemic, COVID-19 children were obliged to home confinement, which potentially limiting sunlight exposure. The aim of this study was to evaluate whether home confinement led to decreased vitamin D serum levels in children in Warsaw, Poland. Methods: The study included 1472 children who were divided into two groups, based on the date of 25(OH)D level blood sampling: before and during the pandemic. Children under 1 year of age (infants) were analysed separately. Results: A statistically significant decrease in the average level of vitamin D was observed between groups of children over 1 year of age (35 ng/mL ± 18 vs. 31 ng/mL ± 14). In infants from both groups, the mean vitamin D levels were within the normal range (Group 1 inf 54 ng/mL ± 21 vs. Group 2 inf 47 ng/mL ± 15). The characteristic seasonal variability was observed before the pandemic, with maximal vitamin D levels in summer (40 ng/mL ± 17) and minimal levels in winter (30 ng/mL ± 14). During the pandemic, no seasonal variability was observed (summer 30 ng/mL ± 11 vs. winter 30 ng/mL ± 19). Conclusions: The COVID-19 pandemic restrictions led to a significant decrease in vitamin D serum levels in children.
Vitamin D is a hormone regulating the immune system and playing a pivotal role in responses to microbial infections. It regulates inflammatory processes by influencing the transcription of immune-response genes in macrophages, T cells, and dendritic cells. The proven role of vitamin D in many infectious diseases of the respiratory tract indicated that vitamin D should also play a role in SARS-CoV-2 infection. Vitamin D inhibits cytokine storm by switching the pro-inflammatory Th1 and Th17 to the anti-inflammatory Th2 and Treg response. Vitamin D is therefore expected to play a role in preventing, relieving symptoms, or treating SARS-CoV-2 infection symptoms, including severe pneumonia. There are several possible mechanisms by which vitamin D may reduce the risk of COVID-19 infection, such as induction of the transcription of cathelicidin and defensin. Also a nongenomic antiviral action of vitamin D and lumisterol, the molecule closely related to vitamin D, was reported. Despite this enormous progress, currently, there is still insufficient scientific evidence to support the claim that vitamin D supplementation may help treat COVID-19 infection. The pandemic restrictions were also shown to impact vitamin D uptake by limiting exposure to sunlight.
The predisposing role to human obesity of the MC3R gene polymorphism is controversial. In this report we present the first study focused on the search for the MC3R polymorphism in the Polish population. Altogether 257 obese children and adolescents (RBMI>120) and 94 adults, who were never obese or overweight (BMI<25), were studied. For all subjects the entire coding sequence was analyzed by direct DNA sequencing. One common polymorphism (81Val>Ile) and two rare mutations (257Arg>Ser and 335Ile>Ser) were identified. The common polymorphism was widely distributed in the obese and control cohorts, while the mutations were identified in four obese subjects only. In case of the 335Ile>Ser substitution a three-generation family, consisting of 20 members, was also analyzed. It was found that all carriers of the 335Ser mutation were obese, but among non-carriers obese subjects also were found. Our study suggests that the predisposing effect to obesity of the 81Ile polymorphic variant is rather unlikely. With regard to the studied rare mutations we suggest that the 335Ser allele may have a small predisposing effect.Electronic supplementary materialThe online version of this article (doi:10.1007/s11033-013-2808-8) contains supplementary material, which is available to authorized users.
Vitamin D, in addition to its superior role as a factor regulating calcium-phosphate metabolism, shows wide effects in other processes in the human body, including key functions of the immune system. This is due to the presence of vitamin D receptors in most cells of the human body. In our study, we aimed to assess whether there is a correlation between vitamin D content and the clinical course of allergic diseases as well as establish their immunological parameters in children. We found that vitamin D deficiency was significantly more frequent in the group of children with an allergic disease than in the control group (p = 0.007). Statistically significant higher vitamin D concentrations in blood were observed in the group of children with a mild course of the disease compared to children with a severe clinical course (p = 0.03). In the group of children with vitamin D deficiency, statistically significant lower percentages of NKT lymphocytes and T-regulatory lymphocytes were detected compared to the group of children without deficiency (respectively, p = 0.02 and p = 0.05), which highlights a potential weakness of the immune system in these patients. Furthermore, statistically higher levels of interleukin-22 were observed in the group of children with vitamin D deficiency (p = 0.01), suggesting a proinflammatory alert state. In conclusion, these results confirm the positive relationship between the optimal content of vitamin D and the lesser severity of allergic diseases in children, establishing weak points in the immune system caused by vitamin D deficiency in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.