The human-and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to have expanded from a common progenitor in Africa. However, the molecular events that accompanied this emergence remain largely unknown. Here, we describe two MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes indicate that the divergence of L8 preceded the loss of the cobF genome region-involved in the cobalamin/vitamin B12 synthesis-and gene interruptions in a subsequent common ancestor shared by all other known MTBC lineages. This discovery further supports an East African origin for the MTBC and provides additional molecular clues on the ancestral genome reduction associated with adaptation to a pathogenic lifestyle.
Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole genome sequencing (WGS) typically requires culture. Here, we evaluated the Deeplex Myc-TB targeted deep sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum. With MTBC DNA tests, the limit of detection was 100–1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1–99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and specificity of 97.4%. Fifty-six of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol, and ethionamide, and low-level rifampicin- or isoniazid-resistance mutations, all notoriously prone to phenotypic testing variability. Only 2 of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and specificity of 98.5/97.2/95.3%. Most residual discordances involved gene deletions/indels and 3–12% heteroresistant calls undetected by WGS analysis, or natural pyrazinamide resistance of globally rare “M. canettii” strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14 902 of 19 422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free. Deeplex Myc-TB may enable fast, tailored tuberculosis treatment.
Physiological races of the oomycete Albugo candida are biotrophic pathogens of diverse plant species, primarily the Brassicaceae, and cause infections that suppress host immunity to other pathogens. However, A. candida race diversity and the consequences of host immunosuppression are poorly understood in the field.We report a method that enables sequencing of DNA of plant pathogens and plantassociated microbes directly from field samples (Pathogen Enrichment Sequencing: PenSeq). We apply this method to explore race diversity in A. candida and to detect A. candidaassociated microbes in the field (91 A. candida-infected plants).We show with unprecedented resolution that each host plant species supports colonization by one of 17 distinct phylogenetic lineages, each with an unique repertoire of effector candidate alleles. These data reveal the crucial role of sexual and asexual reproduction, polyploidy and host domestication in A. candida specialization on distinct plant species. Our bait design also enabled phylogenetic assignment of DNA sequences from bacteria and fungi from plants in the field. This paper shows that targeted sequencing has a great potential for the study of pathogen populations while they are colonizing their hosts. This method could be applied to other microbes, especially to those that cannot be cultured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.