The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communication.
Embedded systems technology is undergoing a phase of transformation owing to the novel advancements in computer architecture and the breakthroughs in machine learning applications. The areas of applications of embedded machine learning (EML) include accurate computer vision schemes, reliable speech recognition, innovative healthcare, robotics, and more. However, there exists a critical drawback in the efficient implementation of ML algorithms targeting embedded applications. Machine learning algorithms are generally computationally and memory intensive, making them unsuitable for resource-constrained environments such as embedded and mobile devices. In order to efficiently implement these compute and memory-intensive algorithms within the embedded and mobile computing space, innovative optimization techniques are required at the algorithm and hardware levels. To this end, this survey aims at exploring current research trends within this circumference. First, we present a brief overview of compute intensive machine learning algorithms such as hidden Markov models (HMM), k-nearest neighbors (k-NNs), support vector machines (SVMs), Gaussian mixture models (GMMs), and deep neural networks (DNNs). Furthermore, we consider different optimization techniques currently adopted to squeeze these computational and memory-intensive algorithms within resource-limited embedded and mobile environments. Additionally, we discuss the implementation of these algorithms in microcontroller units, mobile devices, and hardware accelerators. Conclusively, we give a comprehensive overview of key application areas of EML technology, point out key research directions and highlight key take-away lessons for future research exploration in the embedded machine learning domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.