The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) late December 2019 in Wuhan, China, marked the third introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The constant spillover of coronaviruses from natural hosts to humans has been linked to human activities and other factors. The seriousness of this infection and the lack of effective, licensed countermeasures clearly underscore the need of more detailed and comprehensive understanding of coronavirus molecular biology. Coronaviruses are large, enveloped viruses with a positive sense single-stranded RNA genome. Currently, coronaviruses are recognized as one of the most rapidly evolving viruses due to their high genomic nucleotide substitution rates and recombination. At the molecular level, the coronaviruses employ complex strategies to successfully accomplish genome expression, virus particle assembly and virion progeny release. As the health threats from coronaviruses are constant and long-term, understanding the molecular biology of coronaviruses and controlling their spread has significant implications for global health and economic stability. This review is intended to provide an overview of our current basic knowledge of the molecular biology of coronaviruses, which is important as basic knowledge for the development of coronavirus countermeasures.
Central nervous system (CNS) viral infections are important causes of morbidity and mortality worldwide but the systematic survey of patients admitted to hospitals with CNS infections in many countries, including Indonesia, is limited. To obtain more information regarding the causes of CNS infections in Indonesia, this study was performed to detect and identify viral agents associated with CNS infections amongst in-patients at a referral hospital in Manado, North Sulawesi, Indonesia. Adult patients admitted to R.D. Kandou General Hospital with presumed CNS infection were enrolled. Cerebrospinal fluid, serum, and throat swab samples were collected and tested using molecular, serological, and virus isolation assays. A confirmed viral etiology was established in three and a probable/possible in 11 out of 74 patients. The most common was herpes simplex virus 1 (7/74, 9.5%), followed by Epstein-Barr virus (2/74, 2.7%), cytomegalovirus (1/74, 1.4%), enterovirus D68 (1/74, 1.4%), rhinovirus A (1/74, 1.4%), dengue virus (1/64, 1.6%), and Japanese encephalitis virus (1/64, 1.6%). There were 20 fatal cases (27.0%) during hospitalization in which eight were associated with viral causes. We identified herpes simplex virus 1 as the most common cause of CNS infection among adults in North Sulawesi with most of the cases remaining undiagnosed. Our study highlights the challenges in establishing the etiology of viral CNS infections and the importance of using a wide range of molecular and serological detection methods to identify CNS viruses.
Introduction: Coxsackievirus B3 (CVB3) virus has been implicated as the causative agent of various outbreaks of clinical disease, including hand, foot, and mouth diseases, aseptic meningitis, acute myocarditis, and inflammatory cardiomyopathy. Methodology: Two hundred and nine undiagnosed cryopreserved specimens obtained from factory workers in Bandung, Indonesia, who displayed symptoms of acute febrile illness were gathered. Total RNA was isolated from serum and tested by conventional polymerase chain reaction (PCR) using Enterovirus genus-level primers and confirmed by sequencing. Concurrently, the virus was isolated in LLC-MK2 cells. Results: CVB3 virus was identified in an archived specimen from a patient who presented with symptoms of fever, headache, myalgia, and nausea. Sequencing results of the VP1 region from both the clinical sample and tissue culture supernatant showed 97% homology to a CVB3 virus isolate from Taiwan. Virus propagation in LLC-MK2 cell culture exhibited severe cytopathic effects two days post-inoculation. Conclusions: We report the first case of CVB3 from an undifferentiated febrile illness specimen from Indonesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.