Telomeres, the ends of eukaryotic chromosomes, play pivotal roles in ageing and cancer and are targets of DNA damage and response. However, little is known about the structure and organization of telomeric chromatin at the molecular level. We used electron microscopy and single-molecule magnetic tweezers to characterize well-defined telomeric chromatin fibers of kilobasepair length. The cryo-EM structure of the compact telomeric tetranucleosome revealed a novel columnar folding, unusually short nucleosome repeat length of ~132bp and the role of the histone N-terminal tails in stabilizing this structure. This is the first near-high resolution structure of chromatin with a native DNA sequence. The columnar structure exposes the DNA, making them susceptible to DNA damage. The telomeric tetranucleosome also exists in an alternative well-defined state, with one nucleosome open, accessible to protein factors. This suggests that protein factors, which plays a role in maintaining telomeres, can bind to telomeric chromatin in its compact heterochromatic form. The features of the telomeric chromatin structure reveals important insights of significant relevance for telomere function in vivo that provides information on mechanisms of nucleosome recognition by chromatin factors
The dynamics of eukaryotic nucleosomes are essential in gene activity and well regulated by various factors. Here, we elucidated the internal dynamics at multiple timescales for the human histones hH3 and hH4 in the Widom 601 nucleosome core particles (NCP), suggesting that four dynamic networks are formed by the residues exhibiting larger-scale μs-ms motions that extend from the NCP core to the histone tails and DNA. Furthermore, despite possessing highly conserved structural features, histones in the telomeric NCP exhibit enhanced μs-ms dynamics in the globular sites residing at the identified dynamic networks and in a neighboring region. In addition, higher mobility was observed for the N-terminal tails of hH3 and hH4 in the telomeric NCP. The results demonstrate the existence of dynamic networks in nucleosomes, through which the center of the core regions could interactively communicate with histone tails and DNA to potentially propagate epigenetic changes.
Telomeres protect the ends of our chromosomes and are key to maintaining genomic integrity during cell division and differentiation. However, our knowledge of telomeric chromatin and nucleosome structure at the molecular level is limited. Here, we aimed to define the structure, dynamics as well as properties in solution of the human telomeric nucleosome. We first determined the 2.2 Å crystal structure of a human telomeric nucleosome core particle (NCP) containing 145 bp DNA, which revealed the same helical path for the DNA as well as symmetric stretching in both halves of the NCP as that of the 145 bp ‘601’ NCP. In solution, the telomeric nucleosome exhibited a less stable and a markedly more dynamic structure compared to NCPs containing DNA positioning sequences. These observations provide molecular insights into how telomeric DNA forms nucleosomes and chromatin and advance our understanding of the unique biological role of telomeres.
Linker histones play essential roles in the regulation and maintenance of the dynamic chromatin structure of higher eukaryotes. The influence of human histone H1.0 on the nucleosome structure and biophysical properties of the resulting chromatosome were investigated and compared with the 177-bp nucleosome using Cryo-EM and SAXS. The 4.5 Å Cryo-EM chromatosome structure showed that the linker histone binds at the nucleosome dyad interacting with both linker DNA arms but in a tilted manner leaning towards one of the linker sides. The chromatosome is laterally compacted and rigid in the dyad and linker DNA area, in comparison with the nucleosome where linker DNA region is more flexible and displays structural variability. In solution, the chromatosomes appear slightly larger than the nucleosomes, with the volume increase compared to the bound linker histone, according to solution SAXS measurements. SAXS X-ray diffraction characterisation of Mg-precipitated samples showed that the different shapes of the 177 chromatosome enabled the formation of a highly ordered lamello-columnar phase when precipitated by Mg2+, indicating the influence of linker histone on the nucleosome stacking. The biological significance of linker histone, therefore, may be affected by the change in the polyelectrolyte and DNA conformation properties of the chromatosomes, in comparison to nucleosomes.
In eukaryotes, the compaction of chromatin fibers composed of nucleosome core particles (NCPs) connected by a linker DNA into chromosomes is highly efficient; however, the underlying folding mechanisms remain elusive. We used small angle X-ray scattering (SAXS) to investigate the influence of linker DNA length on the local structure and the interparticle interactions of the NCPs. In the presence of the linker DNA of 30 bp or less in length, the results suggest partial unwrapping of nucleosomal DNA on the NCP irrespective of the linker DNA length. Moreover, the presence of 15 bp linker DNA alleviated the electrostatic repulsion between the NCPs and prevented the formation of an ordered columnar hexagonal phase, demonstrating that the linker DNA plays an active role in chromatin folding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.