Given the outstanding progress in research over the past decade, perovskite photovoltaics (PV) is about to step up from laboratory prototypes to commercial products.For this to happen, realizing scalable processes to allow the technology to transition from solar cells to modules is pivotal. This work presents all-evaporated perovskite PV modules with all thin films coated by established vacuum deposition processes. A common 532-nm nanosecond laser source is employed to realize all three interconnection lines of the solar modules. The resulting module interconnections exhibit low series resistance and a small total lateral extension down to 160 μm. In comparison with interconnection fabrication approaches utilizing multiple scribing tools, the process complexity is reduced while the obtained geometrical fill factor of 96% is comparable with established inorganic thin-film PV technologies. The all-evaporated perovskite minimodules demonstrate power conversion efficiencies of 18.0% and 16.6% on aperture areas of 4 and 51 cm 2 , respectively. Most importantly, the allevaporated minimodules exhibit only minimal upscaling losses as low as 3.1% rel per decade of upscaled area, at the same time being the most efficient perovskite PV minimodules based on an all-evaporated layer stack sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.