Theoretical principles of information processing and empirical findings suggest that to efficiently represent all possible rewards in the natural environment, reward-sensitive neurons have to adapt their coding range dynamically to the current reward context. Adaptation ensures that the reward system is most sensitive for the most likely rewards, enabling the system to efficiently represent a potentially infinite range of reward information. A deficit in neural adaptation would prevent precise representation of rewards and could have detrimental effects for an organism’s ability to optimally engage with its environment. In schizophrenia, reward processing is known to be impaired and has been linked to different symptom dimensions. However, despite the fundamental significance of coding reward adaptively, no study has elucidated whether adaptive reward processing is impaired in schizophrenia. We therefore studied patients with schizophrenia (n=27) and healthy controls (n=25), using functional magnetic resonance imaging in combination with a variant of the monetary incentive delay task. Compared with healthy controls, patients with schizophrenia showed less efficient neural adaptation to the current reward context, which leads to imprecise neural representation of reward. Importantly, the deficit correlated with total symptom severity. Our results suggest that some of the deficits in reward processing in schizophrenia might be due to inefficient neural adaptation to the current reward context. Furthermore, because adaptive coding is a ubiquitous feature of the brain, we believe that our findings provide an avenue in defining a general impairment in neural information processing underlying this debilitating disorder.
Striatal abnormalities play a crucial role in the pathophysiology of schizophrenia. Growing evidence suggests an association between aberrant striatal activity during reward anticipation and symptom dimensions in schizophrenia. However, it is not clear whether this holds across the psychosis continuum. The aim of the present study was to investigate alterations of ventral striatal activation during reward anticipation and its relationship to symptom expression in persons with schizotypal personality traits (SPT) and first-episode psychosis. Twenty-six individuals with high SPT, 26 patients with non-affective first-episode psychosis (including 13 with brief psychotic disorder (FEP-BPD) and 13 with first-episode schizophrenia [FEP-SZ]) and 25 healthy controls underwent event-related functional magnetic resonance imaging while performing a variant of the Monetary Incentive Delay task. Ventral striatal activation was positively correlated with total symptom severity, in particular with levels of positive symptoms. This association was observed across the psychosis continuum and within each subgroup. Patients with FEP-SZ showed the strongest elevation of striatal activation during reward anticipation, although symptom levels did not differ between groups in the psychosis continuum. While our results provide evidence that variance in striatal activation is mainly explained by dimensional symptom expression, patients with schizophrenia show an additional dysregulation of striatal activation. Trans-diagnostic approaches are promising in order to disentangle dimensional and categorical neural mechanisms in the psychosis continuum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.