Purpose: To determine the efficacy of the superoxide dismutase mimetic, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), in vitro in human corneal epithelial (HCE-T) cells and in vivo in a preclinical mouse model for dry-eye disease (DED). Methods: In vitro, HCE-T cultures were exposed either to tertbutylhydroperoxide (tBHP) to generate oxidative stress or to hyperosmolar conditions modeling cellular stress during DED. Cells were pre-treated with Mn-TM-2-PyP or vehicle. Mn-TM-2-PyP permeability across stratified HCE-T cells was assayed, In vivo, Mn-TM-2-PyP (0.1% w/v in saline) was delivered topically as eye drops in a desiccating stress / scopolamine model for DED. Preclinical efficacy was compared to untreated, vehicle-and ophthalmic cyclosporine emulsion-treated mice. Results: Mn-TM-2-PYP protected HCE-T cells in a dose-dependent manner against tBHPinduced oxidative stress as determined by calculating the IC 50 for tBHP in the resazurin, MTT and lactate dehydrogenase release cell viability assays. Mn-TM-2-PyP did not protect HCE-T cells
Topical ocular delivery of trabodenoson significantly improves the clinical and histopathological signs associated with dry-eye disease in mice. This improvement appears to be related to anti-inflammatory effects from targeting adenosine signaling and represents a novel therapeutic approach to develop for the management of dry-eye disease.
Oxidative stress is a known contributor to the progression of dry eye disease pathophysiology, and previous studies have shown that antioxidant intervention is a promising therapeutic approach to reduce the disease burden and slow disease progression. In this study, we evaluated the pharmacological efficacy of the naturally occurring prenylated chalconoid, xanthohumol, in preclinical models for dry eye disease. Xanthohumol acts by promoting the transcription of phase II antioxidant enzymes. In this study, xanthohumol prevented tert-butyl hydroperoxide-induced loss of cell viability in human corneal epithelial (HCE-T) cells in a dose-dependent manner and resulted in a significant increase in expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of phase II endogenous antioxidant enzymes. Xanthohumol-encapsulating poly(lactic-co-glycolic acid) nanoparticles (PLGA NP) were cytoprotective against oxidative stress in vitro, and significantly reduced ocular surface damage and oxidative stress-associated DNA damage in corneal epithelial cells in the mouse desiccating stress/scopolamine model for dry eye disease in vivo. PLGA NP represent a safe and efficacious drug delivery vehicle for hydrophobic small molecules to the ocular surface. Optimization of NP-based antioxidant formulations with the goal to minimize instillation frequency may represent future therapeutic options for dry eye disease and related ocular surface disease.
There is a growing need for novel in vitro corneal models to replace animal-based ex vivo tests in drug permeability studies. In this study, we demonstrated a corneal mimetic that models the stromal and epithelial compartments of the human cornea. Human corneal epithelial cells (HCE-T) were grown on top of a self-supporting porcine collagen-based hydrogel. Cross-sections of the multi-layers were characterized by histological staining and immunocytochemistry of zonula oc-cludens-1 protein (ZO-1) and occludin. Furthermore, water content and bssic elastic properties of the synthetized collagen type I-based hydrogels were measured. The apparent permeability coefficient (Papp) values of a representative set of ophthalmic drugs were measured and correlated to rabbit cornea Papp values found in the literature. A multilayered structure of HCE-T cells and the expression of ZO-1 and occludin in the full thickness of the multilayer were observed. The hydrogel-based corneal model exhibited an excellent correlation to rabbit corneal permeability (r = 0.96), whereas the insert-grown HCE-T multilayer was more permeable and the correlation to the rabbit corneal permeability was lower (r = 0.89). The hydrogel-based human corneal model predicts the rabbit corneal permeability more reliably in comparison to HCE-T cells grown in inserts. This in vitro human corneal model can be successfully employed for drug permeability tests whilst avoiding ethical issues and reducing costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.