challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top performing participating solutions. We observe that the top performing approaches utilize a blend of clinical information, data augmentation, and the ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.
Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and production, or agriculture. Most meteorological centres issue ensemble forecasts of TCC; however, these forecasts are often uncalibrated and exhibit worse forecast skill than ensemble forecasts of other weather variables. Hence, some form of post-processing is strongly required to improve predictive performance. As TCC observations are usually reported on a discrete scale taking just nine different values called oktas, statistical calibration of TCC ensemble forecasts can be considered a classification problem with outputs given by the probabilities of the oktas. This is a classical area where machine learning methods are applied. We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods. Based on the European Centre for Medium-Range Weather Forecasts global TCC ensemble forecasts for 2002-2014, we compare these approaches with the proportional odds logistic regression (POLR) and multiclass logistic regression (MLR) models, as well as the raw TCC ensemble forecasts. We further assess whether improvements in forecast skill can be obtained by incorporating ensemble forecasts of precipitation as additional predictor. Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill. RF models provide the smallest increase in predictive performance, while MLP, POLR and GBM approaches perform best. The use of precipitation forecast data leads to further improvements in forecast skill, and except for very short lead times the extended MLP model shows the best overall performance. Keywords Ensemble calibration Á Logistic regression Á Multilayer perceptron Á Total cloud cover Abbreviations CDF Cumulative distribution function CRPS Continuous ranked probability score CRPSS Continuous ranked probability skill score CTRL (ECMWF) Control (forecast) DM Diebold-Mariano (test) ECMWF European Centre for Medium-Range Weather Forecasts ENS (50-member ECMWF) ensemble EPS Ensemble prediction system GBM Gradient boosting machine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.