Smooth muscle cells line the walls of hollow organs and control the organ dimension and mechanical function by generating force and changing length. Although significant progress has been made in our understanding of the molecular mechanism of actomyosin interaction that produces sliding of actin (thin) and myosin (thick) filaments in smooth muscle, the sarcomeric structure akin to that in striated muscle, which allows the sliding of contractile filaments to be translated into cell shortening has yet to be elucidated. Here we show evidence from porcine airway smooth muscle that supports a model of malleable sarcomeric structure composed of contractile units assembled in series and in parallel. The geometric organization of the basic building blocks (contractile units) within the assembly and the dimension of individual contractile units can be altered when the muscle cells adapt to different lengths. These structural alterations can account for the different length-force relationships of the muscle obtained at different adapted cell lengths. The structural malleability necessary for length adaptation precludes formation of a permanent filament lattice and explains the lack of aligned filament arrays in registers, which also explains why smooth muscle is `smooth'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.