Evidence for rapid evolutionary change in plants in response to changing environmental conditions is widespread in the literature. However, evolutionary change in plant populations has not been quantified using a rate metric that allows for comparisons between and within studies. One objective of this paper is to estimate rates of evolution using data from previously published studies to begin a foundation for comparison and to examine trends and rates of microevolution in plants. We use data gathered from studies of plant adaptations in response to heavy metals, herbicide, pathogens, changes in pH, global change, and novel environments. Rates of evolution are estimated in the form of two metrics, darwins and haldanes. A second objective is to demonstrate how estimated rates could be used to address specific microevolutionary questions. For example, we examine how evolutionary rate changes with time, life history correlates of evolutionary rates, and whether some types of traits evolve faster than others. We also approach the question of how rates can be used to predict patterns of evolution under novel selection pressures using two contemporary examples: introductions of non-native species to alien environments and global change.
Evidence for rapid evolutionary change in plants in response to changing environmental conditions is widespread in the literature. However, evolutionary change in plant populations has not been quantified using a rate metric that allows for comparisons between and within studies. One objective of this paper is to estimate rates of evolution using data from previously published studies to begin a foundation for comparison and to examine trends and rates of microevolution in plants. We use data gathered from studies of plant adaptations in response to heavy metals, herbicide, pathogens, changes in pH, global change, and novel environments. Rates of evolution are estimated in the form of two metrics, darwins and haldanes. A second objective is to demonstrate how estimated rates could be used to address specific microevolutionary questions. For example, we examine how evolutionary rate changes with time, life history correlates of evolutionary rates, and whether some types of traits evolve faster than others. We also approach the question of how rates can be used to predict patterns of evolution under novel selection pressures using two contemporary examples: introductions of non-native species to alien environments and global
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.