Several hundreds of thousand humans are diagnosed with brain cancer every year, and the majority dies within the next two years. The chances of survival could be easiest improved by early diagnosis. This is why there is a strong need for reliable algorithms that can detect the presence of gliomas in their early stage. While an automatic tumor detection algorithm can support a mass screening system, the precise segmentation of the tumor can assist medical staff at therapy planning and patient monitoring. This paper presents a random forest based procedure trained to segment gliomas in multispectral volumetric MRI records. Beside the four observed features, the proposed solution uses 100 further features extracted via morphological operations and Gabor wavelet filtering. A neighborhood-based post-processing was designed to regularize and improve the output of the classifier. The proposed algorithm was trained and tested separately with the 54 low-grade and 220 high-grade tumor volumes of the MICCAI BRATS 2016 training database. For both data sets, the achieved accuracy is characterized by an overall mean Dice score > 83%, sensitivity > 85%, and specificity > 98%. The proposed method is likely to detect all gliomas larger than 10 mL.
The accurate and reliable segmentation of gliomas from magnetic resonance image (MRI) data has an important role in diagnosis, intervention planning, and monitoring the tumor’s evolution during and after therapy. Segmentation has serious anatomical obstacles like the great variety of the tumor’s location, size, shape, and appearance and the modified position of normal tissues. Other phenomena like intensity inhomogeneity and the lack of standard intensity scale in MRI data represent further difficulties. This paper proposes a fully automatic brain tumor segmentation procedure that attempts to handle all the above problems. Having its foundations on the MRI data provided by the MICCAI Brain Tumor Segmentation (BraTS) Challenges, the procedure consists of three main phases. The first pre-processing phase prepares the MRI data to be suitable for supervised classification, by attempting to fix missing data, suppressing the intensity inhomogeneity, normalizing the histogram of observed data channels, generating additional morphological, gradient-based, and Gabor-wavelet features, and optionally applying atlas-based data enhancement. The second phase accomplishes the main classification process using ensembles of binary decision trees and provides an initial, intermediary labeling for each pixel of test records. The last phase reevaluates these intermediary labels using a random forest classifier, then deploys a spatial region growing-based structural validation of suspected tumors, thus achieving a high-quality final segmentation result. The accuracy of the procedure is evaluated using the multi-spectral MRI records of the BraTS 2015 and BraTS 2019 training data sets. The procedure achieves high-quality segmentation results, characterized by average Dice similarity scores of up to 86%.
Absolute values in magnetic resonance image data do not say anything about the investigated tissues. All these numerical values are relative, they depend on the imaging device and they may vary from session to session. Consequently, there is a need for histogram normalization before any other processing is performed on MRI data. The Brain Tumor Segmentation (BraTS) challenge organized yearly since 2012 contributed to the intensification of the focus on tumor segmentation techniques based on multi-spectral MRI data. A large subset of methods developed within the bounds of this challenge declared that they rely on a classical histogram normalization method proposed by Nyúl et al. in 2000, which supposed that the corrected histogram of a certain organ composed of normal tissues only should be similar in all patients. However, this classical method did not count with possible lesions that can vary a lot in size, position, and shape. This paper proposes to perform a comparison of three sets of histogram normalization methods deployed in a brain tumor segmentation framework, and formulates recommendations regarding this preprocessing step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.