Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.
Studies on climate change impacts are essential for identifying vulnerabilities and developing adaptation options. However, such studies depend crucially on the availability of reliable climate data. In this study, we introduce the climatological database called FORESEE (Open Database for Climate Change Related Impact Studies in Central Europe), which was developed to support the research of and adaptation to climate change in Central and Eastern Europe: the region where knowledge of possible climate change effects is inadequate. A questionnaire‐based survey was used to specify database structure and content. FORESEE contains the seamless combination of gridded daily observation‐based data (1951–2013) built on the E‐OBS and CRU TS datasets, and a collection of climate projections (2014–2100). The future climate is represented by bias‐corrected meteorological data from 10 regional climate models (RCMs), driven by the A1B emission scenario. These latter data were developed within the frame of the ENSEMBLES FP6 project. Although FORESEE only covers a limited area of Central and Eastern Europe, the methodology of database development, the applied bias correction techniques, and the data dissemination method, can serve as a blueprint for similar initiatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.