Bingeing on sugar may activate neural pathways in a manner similar to taking drugs of abuse, resulting in related signs of dependence. The present experiments test whether rats that have been bingeing on sucrose and then fasted demonstrate signs of opiate-like withdrawal. Rats were maintained on 12-h deprivation followed by 12-h access to a 10% sucrose solution and chow for 28 days, then fasted for 36 h. These animals spent less time on the exposed arm of an elevated plus-maze compared with a similarly deprived ad libitum chow group, suggesting anxiety. Microdialysis revealed a concomitant increase in extracellular acetylcholine and decrease in dopamine release in the nucleus accumbens shell. These results did not appear to be due to hypoglycemia. The findings suggest that a diet of bingeing on sucrose and chow followed by fasting creates a state that involves anxiety and altered accumbens dopamine and acetylcholine balance. This is similar to the effects of naloxone, suggesting opiate-like withdrawal. This may be a factor in some eating disorders.
We compute new chemical profiles for the core and envelope of white dwarfs appropriate for pulsational studies of ZZ Ceti stars. These profiles are extracted from the complete evolution of progenitor stars, evolved through the main sequence and the thermally-pulsing asymptotic giant branch (AGB) stages, and from time-dependent element diffusion during white dwarf evolution. We discuss the importance of the initial-final mass relationship for the white dwarf carbon-oxygen composition. In particular, we find that the central oxygen abundance may be underestimated by about 15% if the white dwarf mass is assumed to be the hydrogen-free core mass before the first thermal pulse. We also discuss the importance for the chemical profiles expected in the outermost layers of ZZ Ceti stars of the computation of the thermally-pulsing AGB phase and of the phase in which element diffusion is relevant. We find a strong dependence of the outer layer chemical stratification on the stellar mass. In particular, in the less massive models, the double-layered structure in the helium layer built up during the thermally-pulsing AGB phase is not removed by diffusion by the time the ZZ Ceti stage is reached. Finally, we perform adiabatic pulsation calculations and discuss the implications of our new chemical profiles for the pulsational properties of ZZ Ceti stars. We find that the whole g−mode period spectrum and the mode-trapping properties of these pulsating white dwarfs as derived from our new chemical profiles are substantially different from those based on chemical profiles widely used in existing asteroseismological studies. Thus, we expect the asteroseismological models derived from our chemical profiles to be significantly different from those found thus far.
BackgroundThe mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues.ResultsIntraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-α and IFN-γ immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor cells. PCR array experiments showed that the expression of cyclin B2 and E2F1, two key cell cycle regulators, was markedly downregulated by LPS in the circumvallate and foliate epithelia.ConclusionsOur results show that LPS-induced inflammation inhibits taste progenitor cell proliferation and interferes with taste cell renewal. LPS accelerates cell turnover and modestly shortens the average life span of taste cells. These effects of inflammation may contribute to the development of taste disorders associated with infections.
We present the Kepler light curve of KIC 4552982, the first ZZ Ceti (hydrogen-atmosphere pulsating white dwarf star) discovered in the Kepler field of view. Our data span more than 1.5 years, with a 86% duty cycle, making it the longest pseudo-continuous light curve ever recorded for a ZZ Ceti. This extensive data set provides the most complete coverage to date of amplitude and frequency variations in a cool ZZ Ceti. We detect 20 independent frequencies of variability in the data that we compare with asteroseismic models to demonstrate that this star has a mass M * 0.6 > M . We identify a rotationally split pulsation mode and derive a probable rotation period for this star of 17.47 ± 0.04 hr. In addition to pulsation signatures, the Kepler light curve exhibits sporadic, energetic outbursts that increase the star's relative flux by 2%-17%, last 4-25 hr, and recur on an average timescale of 2.7 days. These are the first detections of a new dynamic white dwarf phenomenon that may be related to the pulsations of this relatively cool (T eff 10,860 120 = K) ZZ Ceti star near the red edge of the instability strip.
We compute rates of period change (Ṗ) for the 215 s mode in G117-B15A and the 213 s mode in R548, first for models without axions, and then for models with axions of increasing mass. We use the asteroseismological models for G117-B15A and R548 we derived in an earlier publication. For G117-B15A, we consider two families of solutions, one with relatively thick hydrogen layers and one with thin hydrogen layers. Given the region of parameter space occupied by our models, we estimate error bars on the calculatedṖ values using Monte Carlo simulations. Together with the observedṖ for G117-B15A, our analysis yields strong limits on the DFSZ axion mass. Our thin hydrogen solutions place an upper limit of 13.5 meV on the axion, while our thick hydrogen solutions relaxes that limit to 26.5 meV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.