Few studies have evaluated the impact of fortification with iron-rich foods such as amaranth grain and multi-micronutrient powder (MNP) containing low doses of highly bioavailable iron to control iron deficiency anemia (IDA) in children. We assessed the efficacy of maize porridge enriched with amaranth grain or MNP to reduce IDA in Kenyan preschool children. In a 16-wk intervention trial, children (n = 279; 12-59 mo) were randomly assigned to: unrefined maize porridge (control; 4.1 mg of iron/meal; phytate:iron molar ratio 5:1); unrefined maize (30%) and amaranth grain (70%) porridge (amaranth group; 23 mg of iron/meal; phytate:iron molar ratio 3:1); or unrefined maize porridge with MNP (MNP group; 6.6 mg iron/meal; phytate:iron molar ratio 2.6:1; 2.5 mg iron as NaFeEDTA). Primary outcomes were anemia and iron status with treatment effects estimated relative to control. At baseline, 38% were anemic and 30% iron deficient. Consumption of MNP reduced the prevalence of anemia [-46% (95% CI: -67, -12)], iron deficiency [-70% (95% CI: -89, -16)], and IDA [-75% (95% CI: -92, -20)]. The soluble transferrin receptor [-10% (95% CI: -16, -4)] concentration was lower, whereas the hemoglobin (Hb) [2.7 g/L (95% CI: 0.4, 5.1)] and plasma ferritin [40% (95% CI: 10, 95)] concentrations increased in the MNP group. There was no significant change in Hb or iron status in the amaranth group. Consumption of maize porridge fortified with low-dose, highly bioavailable iron MNP can reduce the prevalence of IDA in preschool children. In contrast, fortification with amaranth grain did not improve iron status despite a large increase in iron intake, likely due to high ratio of phytic acid:iron in the meal.
Objective: Simulating the probable impact of grain amaranth and highly absorbable, low-Fe micronutrient powder (MNP) on Fe status in a potential target population is an essential step in choosing and developing an appropriate actual intervention. Design: We simulated the potential effect of fortifying maize porridge with grain amaranth or MNP on the prevalence of inadequate Fe intake and Fe deficiency using data from two cross-sectional surveys. In the first survey (2008), dietary intake data were collected by two 24 h recalls (n 197). Biochemical data (n 70) were collected in the second survey (2010). A simulation with daily consumption for 80 d of non-fortified maize porridge (60 g of maize flour), amaranth-enriched porridge (80 g of grain amaranth-maize flour, 70:30 ratio) or maize porridge fortified with MNP (2?5 mg Fe as NaFeEDTA) was done. Setting: Mwingi District, Kenya. Subjects: Pre-school children aged 12-23 months. Results: Prevalence of anaemia, Fe deficiency and Fe-deficiency anaemia was 49 %, 46 % and 24 %, respectively. Consumption of non-fortified, amaranth-enriched and MNP-fortified maize porridge was estimated to provide a median daily Fe intake of 8?6 mg, 17?5 mg and 11?1 mg, respectively. The prevalence of inadequate Fe intake was reduced to 35 % in the amaranth-enriched porridge group and 45 % in the MNP-fortified porridge group, while ferritin concentration was increased in both (by 1?82 (95 % CI 1?42, 2?34) mg/l and 1?80 (95 % CI 1?40, 2?31) mg/l, respectively; P , 0?005) compared with the non-fortified maize porridge group, resulting in a decreased prevalence of Fe deficiency (27 %) in the two fortification groups. Conclusions: Addition of grain amaranth or low-Fe MNP to maize-based porridge has potential to improve Fe intake and status in pre-school children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.