Mineral phosphorus (P) fertilizers contain contaminants that are potentially hazardous to humans and the environment. Frequent mineral P fertilizer applications can cause heavy metals to accumulate and reach undesirable concentrations in agricultural soils. There is particular concern about Cadmium (Cd) and Uranium (U) accumulation because these metals are toxic and can endanger soil fertility, leach into groundwater, and be taken up by crops. We determined total Cd and U concentrations in more than 400 topsoil and subsoil samples obtained from 216 agricultural sites across Switzerland. We also investigated temporal changes in Cd and U concentrations since 1985 in soil at six selected Swiss national soil monitoring network sites. The mean U concentrations were 16% higher in arable topsoil than in grassland topsoil. The Cd concentrations in arable and grassland soils did not differ, which we attribute to soil management practices and Cd sources other than mineral P fertilizers masking Cd inputs from mineral P fertilizers. The mean Cd and U concentrations were 58% and 9% higher, respectively, in arable topsoil than in arable subsoil, indicating that significant Cd and U inputs to arable soils occurred in the past. Geochemical mass balances confirmed this, indicating an accumulation of 52% for Cd and 6% for U. Only minor temporal changes were found in the Cd concentrations in topsoil from the six soil-monitoring sites, but U concentrations in topsoil from three sites had significantly increased since 1985. Sewage sludge and atmospheric deposition were previously important sources of Cd to agricultural soils, but today mineral P fertilizers are the dominant sources of Cd and U. Future Cd and U inputs to agricultural soils may be reduced by using optimized management practices, establishing U threshold values for mineral P fertilizers and soils, effectively enforcing threshold values, and developing and using clean recycled P fertilizers.
Aims In acid tropical forest soils (pH <5.5) increased mobility of aluminum might limit aboveground productivity. Therefore, we evaluated Al phytotoxicity of three native tree species of tropical montane forests in southern Ecuador. Methods An hydroponic dose-response experiment was conducted. Seedlings of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson were treated with 0, 300, 600, 1200, and 2400 μM Al and an organic layer leachate. Dose-response curves were generated for root and shoot morphologic properties to determine effective concentrations (EC). Results Shoot biomass and healthy leaf area decreased by 44 % to 83 % at 2400 μM Al, root biomass did not respond (C. odorata), declined by 51 % (H. americanus), or was stimulated at low Al concentrations of 300 μM (T. chrysantha).
Mineral phosphorus fertilizers are regularly applied to agricultural sites, but their uranium (U) content is potentially hazardous to humans and the environment. Fertilizer-derived U can accumulate in the soil, but might also leach to ground-, spring and surface waters. We sampled 19 mineral fertilizers from the canton of Bern and soils of three arable and one forest reference sites at each of four locations with elevated U concentrations (7-28 μg L) in nearby drinking water wells. The total U concentrations of the fertilizers were measured. The soils were analysed at three depth intervals down to 1 m for general soil parameters, total Cd, P, U and NaHCO-extractable U concentrations, and U activity ratios (AR). The U concentrations and AR values of the drinking water samples were also measured. A theoretical assessment showed that fertilizer-derived U may cause high U concentrations in leaching waters (up to approx. 25 μg L), but normally contributes only a small amount (approx. 0-3 μg L). The arable soils investigated showed no significant U accumulation compared to the forest sites. The close positive correlation of AR with NaHCO-extractable U (R = 0.7, p < 0.001) indicates that application of fertilizer can increase the extractable U pool. The lack of depth gradients in the soil U concentrations (1.5-2.7 mg kg) and AR (0.90-1.06) ratios are inconsistent with the accumulation of U in the surface soil, and might indicate some leaching of fertilizer-derived U. The AR values in the water samples were close to 1, possibly suggesting an influence of fertilizer-derived U. However, based on findings from the literature and considering the heterogeneity of the catchment area, the agricultural practices, and the comparatively long distance to the groundwater, we conclude that fertilizer-derived U makes only a minor contribution to the elevated U concentrations in the water samples.
Abstr actAims We determined the reasons why in nutrient solution increasing Al concentrations > 300 μ M inhibited shoot biomass production of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson while 300 μ M Al stimulated root biomass production of Tabebuia chrysantha. Methods Nutrient concentrations in plant tissue after a hydroponic growth experiment were determined. Results Increasing Al concentrations significantly decreased Mg concentrations in leaves. Phosphorus concentrations in roots of C. odorata and T.
Growth limitation induced by Al toxicity is believed to commonly occur in tropical forests, although a direct proof is frequently lacking. To test for the general assumption of Al toxicity, Al, Ca, and Mg concentrations in precipitation, throughfall, stemflow, organic layer leachate, mineral soil solutions, stream water, and the leaves of 17 native tree species were analyzed. We calculated Al fluxes, analyzed temporal trends and modeled Al speciation in the litter leachate and mineral soil solutions. We assessed potential Al toxicity based on soil base saturation, Al concentrations, Ca:Al and Mg:Al molar ratios and Al speciation in soil solution as well as Al concentrations and Ca:Al and Mg:Al molar ratios in tree leaves. High Al fluxes in litterfall (8.77±1.3 to 14.2±1.9 kg ha-1 yr-1 , mean±SE) indicate a high Al circulation through the ecosystem. The fraction of exchangeable and potentially plant-available Al in mineral soils was high, being a likely reason for a low root length density in the mineral soil. However, Al concentrations in all solutions were consistently below critical values and Ca:Al molar and the Ca 2+ :Alinorganic molar ratios in the organic layer leachate and soil solutions were above 1, the suggested threshold for
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.