Individuals at risk (IAR) of familial pancreatic cancer (FPC) are good candidates for screening. Unfortunately, neither reliable imaging modalities nor biomarkers are available to detect high-grade precursor lesions or early cancer. Circulating levels of candidate biomarkers LCN2, TIMP1, Glypican-1, RNU2-1f, and miRNA-196b were analyzed in 218 individuals with sporadic pancreatic ductal adenocarcinoma (PDAC, n = 50), FPC (n = 20), chronic pancreatitis (n = 10), IAR with relevant precursor lesions (n = 11) or non-relevant lesions (n = 5), 20 controls, and IAR with (n = 51) or without (n = 51) lesions on pancreatic imaging. In addition, corresponding duodenal juice samples were analyzed for Glypican-1 (n = 144) enrichment and KRAS mutations (n = 123). The panel miR-196b/LCN2/TIMP1 could distinguish high-grade lesions and stage I PDAC from controls with absolute specificity and sensitivity. In contrast, Glypican-1 enrichment in serum exosomes and duodenal juice was not diagnostic. KRAS mutations in duodenal juice were detected in 9 of 12 patients with PDAC and only 4 of 9 IAR with relevant precursor lesions. IAR with lesions on imaging had elevated miR-196b/LCN2/TIMP1 levels (p = 0.0007) and KRAS mutations in duodenal juice (p = 0.0004) significantly more often than IAR without imaging lesions. The combination miR-196b/LCN2/TIMP1 might be a promising biomarker set for the detection of high-grade PDAC precursor lesions in IAR of FPC families.
Due to a grim prognosis, there is an urgent need to detect pancreatic ductal adenocarcinoma (PDAC) prior to metastasis. However, reliable diagnostic imaging methods or biomarkers for PDAC or its precursor lesions are still scarce. ADAM8, a metalloprotease-disintegrin, is highly expressed in PDAC tissue and negatively correlates with patient survival. The aim of our study was to determine the ability of ADAM8-positive extracellular vesicles (EVs) and cargo microRNAs (miRNAs) to discriminate precursor lesions or PDAC from healthy controls. In order to investigate enrichment of ADAM8 on EVs, these were isolated from serum of patients with PDAC (n = 52), precursor lesions (n = 7) and healthy individuals (n = 20). Nanoparticle Tracking Analysis and electron microscopy indicated successful preparation of EVs that were analyzed for ADAM8 by FACS. Additionally, EV cargo analyses of miRNAs from the same serum samples revealed the presence of miR-720 and miR-451 by qPCR and was validated in 20 additional PDAC samples. Statistical analyses included Wilcoxon rank test and ROC curves. FACS analysis detected significant enrichment of ADAM8 in EVs from patients with PDAC or precursor lesions compared to healthy individuals (p = 0.0005). ADAM8-dependent co-variates, miR-451 and miR-720 were also diagnostic, as patients with PDAC had significantly higher serum levels of miR-451 and lower serum levels of miR-720 than healthy controls and reached high sensitivity and specificity (AUC = 0.93 and 1.00, respectively) to discriminate PDAC from healthy control. Thus, detection of ADAM8-positive EVs and related cargo miR-720 and miR-451 may constitute a specific biomarker set for screening individuals at risk for PDAC.
Background Maintenance of genome integrity during DNA replication is crucial to the perpetuation of all organisms. In eukaryotes, the bypass of DNA lesions by the replication machinery prevents prolonged stalling of the replication fork, which could otherwise lead to greater damages such as gross chromosomal rearrangements. Bypassing DNA lesions and subsequent repair are accomplished by the activation of DNA damage tolerance pathways such as the template switching (TS) pathway. In yeast, the RAD5 (Radiation-sensitive 5) protein plays a crucial role in initiating the TS pathway by catalyzing the polyubiquitination of PCNA (Proliferation Cell Nuclear Antigen). Likewise, one of the mammalian RAD5-homologs, SHPRH (SNF2, histone linker, PHD, RING, helicase) mediates PCNA polyubiquitination. To date, the study of SHPRH enzymatic functions has been limited to this modification. It is therefore unclear how SHPRH carries out its function in DNA repair. Moreover, how this protein regulates gene transcription at the enzymatic level is also unknown. Results Given that SHPRH harbors domains found in chromatin remodeling proteins, we investigated its biochemical properties in the presence of nucleosomal substrates. We find that SHPRH binds equally well to double-stranded (ds) DNA and to nucleosome core particles, however, like ISWI and CHD-family remodelers, SHPRH shows a strong preference for nucleosomes presenting extranucleosomal DNA. Moreover, nucleosomes but not dsDNA strongly stimulate the ATPase activity of SHPRH. Intriguingly, unlike typically observed with SNF2-family enzymes, ATPase activity does not translate into conventional nucleosome remodeling, under standard assay conditions. To test whether SHPRH can act as a ubiquitin E3 ligase for nucleosomes, we performed a screen using 26 E2-conjugating enzymes. We uncover that SHPRH is a potent nucleosome E3-ubiquitin-ligase that can function with at least 7 different E2s. Mass spectrometry analyses of products generated in the presence of the UBE2D1-conjugating enzyme reveal that SHPRH can catalyze the formation of polyubiquitin linkages that are either branched or associated with the recruitment of DNA repair factors, as well as linkages involved in proteasomal degradation. Conclusions We propose that, in addition to polyubiquitinating PCNA, SHPRH promotes DNA repair or transcriptional regulation in part through chromatin ubiquitination. Our study sets a biochemical framework for studying other RAD5- and RAD16-related protein functions through the ubiquitination of nucleosomes. Electronic supplementary material The online version of this article (10.1186/s13072-019-0294-5) contains supplementary material, which is available to authorized users.
About 95% of Glioblastoma (GBM) patients experience tumor relapse as a consequence of resistance to the first-line standard chemotherapy using temozolomide (TMZ). Recent studies reported consistently elevated expression levels of carbonic anhydrase CA2 in recurrent glioblastoma and temozolomide-resistant glioblastoma stem-like cells (GSCs). Here we show that CA2 is preferentially expressed in GSCs and upregulated by TMZ treatment. When expressed in GBM cell lines, CA2 exerts significant metabolic changes reflected by enhanced oxygen consumption and increased extracellular acidification causing higher rates of cell invasion. Notably, GBM cells expressing CA2 respond to combined treatment with TMZ and brinzolamide (BRZ), a non-toxic and potent CA2 inhibitor. Interestingly, brinzolamide was more effective than the pan-CA inhibitor Acetazolamide (ACZ) to sensitize naïve GSCs and TMZ-resistant GSCs to TMZ induced cell death. Mechanistically, we demonstrated that the combined treatment of GBM stem cells with TMZ and BRZ caused autophagy of GBM cell lines and GSCs, reflected by enhanced LC3 cleavage (LC3-II) and p62 reduction. Our findings illustrate the potential of CA2 as a chemo-sensitizing drug target in recurrent GBM and propose a combined treatment of TMZ with CA2 inhibitor to tackle GBM chemoresistance and recurrence.
Glioblastoma (GBM) as the most common and aggressive brain tumor is characterized by genetic heterogeneity, invasiveness, radio-/chemoresistance, and occurrence of GBM stem-like cells. The metalloprotease-disintegrin ADAM8 is highly expressed in GBM tumor and immune cells and correlates with poor survival. In GBM, ADAM8 affects intracellular kinase signaling and increases expression levels of osteopontin/SPP1 and matrix metalloproteinase 9 (MMP9) by an unknown mechanism. Here we explored whether microRNA (miRNA) expression levels could be regulators of MMP9 expression in GBM cells expressing ADAM8. Initially, we identified several miRNAs as dysregulated in ADAM8-deficient U87 GBM cells. Among these, the tumor suppressor miR-181a-5p was significantly upregulated in ADAM8 knockout clones. By inhibiting kinase signaling, we found that ADAM8 downregulates expression of miR-181a-5p via activation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling suggesting an ADAM8-dependent silencing of miR-181a-5p. In turn, mimic miR-181a-5p transfection caused decreased cell proliferation and lower MMP9 expression in GBM cells. Furthermore, miR-181a-5p was detected in GBM cell-derived extracellular vesicles (EVs) as well as patient serum-derived EVs. We identified miR-181a-5p downregulating MMP9 expression via targeting the MAPK pathway. Analysis of patient tissue samples (n=22) revealed that in GBM, miR-181a-5p is strongly downregulated compared to ADAM8 and MMP9 mRNA expression, even in localized tumor areas. Taken together, we provide evidence for a functional axis involving ADAM8/miR-181a-5p/MAPK/MMP9 in GBM tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.