Salicylic acid (SA) applied at 10(-3) m in hydroponic culture decreased stomatal conductance (g(s)), maximal CO(2) fixation rate (A(max) ) and initial slopes of the CO(2) (A/C(i)) and light response (A/PPFD) curves, carboxylation efficiency of Rubisco (CE) and photosynthetic quantum efficiency (Q), resulting in the death of tomato plants. However, plants could acclimate to lower concentrations of SA (10(-7) -10(-4) m) and, after 3 weeks, returned to control levels of g(s), photosynthetic performance and soluble sugar content. In response to high salinity (100 mm NaCl), the pre-treated plants exhibited higher A(max) as a function of internal CO(2) concentration (C(i) ) or photosynthetic photon flux density (PPFD), and higher CE and Q values than salt-treated controls, suggesting more effective photosynthesis after SA treatment. Growth in 10(-7) or 10(-4) m SA-containing solution led to accumulation of soluble sugars in both leaf and root tissues, which remained higher in both plant parts during salt stress at 10(-4) m SA. The activity of hexokinase (HXK) with glucose, but not fructose, as substrate was reduced by SA treatment in leaf and root samples, leading to accumulation of glucose and fructose in leaf tissues. HXK activity decreased further under high salinity in both plant organs. The accumulation of soluble sugars and sucrose in roots of plants growing in the presence of 10(-4) m SA contributed to osmotic adjustment and improved tolerance to subsequent salt stress. Apart from its putative role in delaying senescence, decreased HXK activity may divert hexoses from catabolic reactions to osmotic adaptation.
Copper (Cu) is an essential microelement for growth and development, but in excess it can cause toxicity in plants. In this comparative study, the uptake and accumulation of Cu as well as the morphological and physiological responses of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) roots to Cu treatment were investigated. The possible involvement of redox active molecules (reactive oxygen species and nitric oxide) and modification in cell wall structure associated with Cu-induced morphological responses were also studied. In short- and long-term treatments, B. juncea suffered more pronounced growth inhibition as compared with B. napus. In addition to the shortening of primary and lateral roots, the number and the density of the laterals were also decreased by Cu. Exposure to copper induced nitric oxide generation in the root tips and this event proved to be dependent on the duration of the exposure and on the plant species. In short- and long-term treatments, Indian mustard showed more significant activation of superoxide dismutase (SOD), inhibition of ascorbate peroxidase (APX) and oxidation of ascorbate (AsA) than B. napus. Moreover, H2O2-dependent lignification was also observed in the Cu-exposed plants. In longer term, significant AsA accumulation and callose deposition were observed, reflecting serious oxidative stress in B. juncea. Based on the morphological and physiological results, we conclude that rapeseed tolerates Cu excess better than Indian mustard.
This study examined the structural diversity and bioactivity of peptaibol compounds produced by species from the phylogenetically separated Longibrachiatum Clade of the filamentous fungal genus Trichoderma , which contains several biotechnologically, agriculturally and clinically important species. HPLC-ESI-MS investigations of crude extracts from 17 species of the Longibrachiatum Clade ( T. aethiopicum, T. andinense, T. capillare, T. citrinoviride, T. effusum, T. flagellatum, T. ghanense, T. konilangbra, T. longibrachiatum, T. novae-zelandiae, T. pinnatum, T . parareesei, T. pseudokoningii, T. reesei, T. saturnisporum, T. sinensis , and T. orientale ) revealed several new and recurrent 20-residue peptaibols related to trichobrachins, paracelsins, suzukacillins, saturnisporins, trichoaureocins, trichocellins, longibrachins, hyporientalins, trichokonins, trilongins, metanicins, trichosporins, gliodeliquescins, alamethicins and hypophellins, as well as eight 19-residue sequences from a new subfamily of peptaibols named brevicelsins. Non-ribosomal peptide synthetase genes were mined from the available genome sequences of the Longibrachiatum Clade. Their annotation and product prediction were performed in silico and revealed full agreement in 11 out of 20 positions regarding the amino acids predicted based on the signature sequences and the detected amino acids incorporated. Molecular dynamics simulations were performed for structural characterization of four selected peptaibol sequences: paracelsins B, H and their 19-residue counterparts brevicelsins I and IV. Loss of position R6 in brevicelsins resulted in smaller helical structures with higher atomic fluctuation for every residue than the structures formed by paracelsins. We observed the formation of highly bent, almost hairpin-like, helical structures throughout the trajectory, along with linear conformation. Bioactivity tests were performed on the purified peptaibol extract of T . reesei on clinically and phytopathologically important filamentous fungi, mammalian cells, and Arabidopsis thaliana seedlings. Porcine kidney cells and boar spermatozoa proved to be sensitive to the purified peptaibol extract. Peptaibol concentrations ≥0.3 mg ml −1 deterred the growth of A . thaliana . However, negative effects to plants were not detected at concentrations below 0.1 mg ml −1 , which could still inhibit plant pathogenic filamentous fungi, suggesting that those peptaibols reported here may have applications for plant protection.
Hydrogen peroxide (H₂O₂) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross-tolerance to various stressors. SA-stimulated pre-adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole-plant level, SA-induced massive H₂O₂ accumulation only at high concentrations (10⁻³-10⁻² M), which later caused the death of plants. The excess accumulation of H₂O₂ as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre-treatments. In the root tips, 10⁻³-10⁻² M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre-adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt-treated samples. This suggests that, the cross-talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1-aminocyclopropane-1-carboxylic acid, the compounds accumulating in pre-treated plants, enhanced the diphenylene iodonium-sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.