Industrially produced N-fertilizer is essential to the production of cereals that supports current and projected human populations. We constructed a top-down global N budget for maize, rice, and wheat for a 50-year period (1961 to 2010). Cereals harvested a total of 1551 Tg of N, of which 48% was supplied through fertilizer-N and 4% came from net soil depletion. An estimated 48% (737 Tg) of crop N, equal to 29, 38, and 25 kg ha−1 yr−1 for maize, rice, and wheat, respectively, is contributed by sources other than fertilizer- or soil-N. Non-symbiotic N2 fixation appears to be the major source of this N, which is 370 Tg or 24% of total N in the crop, corresponding to 13, 22, and 13 kg ha−1 yr−1 for maize, rice, and wheat, respectively. Manure (217 Tg or 14%) and atmospheric deposition (96 Tg or 6%) are the other sources of N. Crop residues and seed contribute marginally. Our scaling-down approach to estimate the contribution of non-symbiotic N2 fixation is robust because it focuses on global quantities of N in sources and sinks that are easier to estimate, in contrast to estimating N losses per se, because losses are highly soil-, climate-, and crop-specific.
Conventional tillage and crop establishment methods such as puddled transplanting in the rice–wheat (Oryza sativa L.–Triticum aestivum L.) system in the Indo‐Gangetic Plains (IGP) require a large amount of water and labor, both of which are increasingly becoming scarce and expensive. We attempted to evaluate alternatives that would require smaller amounts of these two inputs. A field experiment was conducted in the IGP for 2 yr to evaluate various tillage and crop establishment systems for their efficiency in labor, water, and energy use and economic profitability. The yields of rice in the conventional puddled transplanting and direct‐seeding on puddled or nonpuddled (no‐tillage) flat bed systems were equal. Yields of wheat following either the puddled‐transplanted or no‐tillage direct‐seeded rice were also equal. Normally, puddled transplanting required 35 to 40% more irrigation water than no‐tillage direct‐seeded rice. Compared with conventional puddled transplanting, direct seeding of rice on raised beds had a 13 to 23% savings of irrigation water, but with an associated yield loss of 14 to 25%. Nevertheless, water use efficiency (WUE) in the rice–wheat system was higher with direct‐seeded rice (0.45 g L−1) than with transplanted rice (0.37–0.43 g L−1). In Year 1, no‐tillage rice–wheat had a higher net return than the conventional system, whereas in Year 2 the net returns were equal. The study showed that the conventional practice of puddled transplanting could be replaced with no‐tillage‐based crop establishment methods to save water and labor. However, the occurrence and distribution of rainfall during the cropping season had considerable influence on the savings in irrigation water.
Soil organic matter (SOM) is essential for sustaining food production and maintaining ecosystem services and is a vital resource base for storing C and N. The impact of long-term use of synthetic fertilizer N on SOM, however, has been questioned recently. Here we tested the hypothesis that long-term application of N results in a decrease in SOM. We used data from 135 studies of 114 long-term experiments located at 100 sites throughout the world over time scales of decades under a range of land-management and climate regimes to quantify changes in soil organic carbon (SOC) and soil organic nitrogen (SON). Published data of a total of 917 and 580 observations for SOC and SON, respectively, from control (unfertilized or zero N) and N-fertilized treatments (synthetic, organic, and combination) were analyzed using the SAS mixed model and by meta-analysis. Results demonstrate declines of 7 to 16% in SOC and 7 to 11% in SON with no N amendments. In soils receiving synthetic fertilizer N, the rate of SOM loss decreased. The time-fertilizer response ratio, which is based on changes in the paired comparisons, showed average increases of 8 and 12% for SOC and SON, respectively, following the application of synthetic fertilizer N. Addition of organic matter (i.e., manure) increased SOM, on average, by 37%. When cropping systems fluctuated between flooding and drying, SOM decreased more than in continuous dryland or flooded systems. Flooded rice ( L.) soils show net accumulations of SOC and SON. This work shows a general decline in SOM for all long-term sites, with and without synthetic fertilizer N. However, our analysis also demonstrates that in addition to its role in improving crop productivity, synthetic fertilizer N significantly reduces the rate at which SOM is declining in agricultural soils, worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.