Abstract. We compile and analyze all available geothermal heat flow measurements collected in and around Greenland into a new database of 419 sites and generate an accompanying spatial map. This database includes 290 sites previously reported by the International Heat Flow Commission (IHFC), for which we now standardize measurement and metadata quality. This database also includes 129 new sites, which have not been previously reported by the IHFC. These new sites consist of 88 offshore measurements and 41 onshore measurements, of which 24 are subglacial. We employ machine learning to synthesize these in situ measurements into a gridded geothermal heat flow model that is consistent across both continental and marine areas in and around Greenland. This model has a native horizontal resolution of 55 km. In comparison to five existing Greenland geothermal heat flow models, our model has the lowest mean geothermal heat flow for Greenland onshore areas. Our modeled heat flow in central North Greenland is highly sensitive to whether the NGRIP (North GReenland Ice core Project) elevated heat flow anomaly is included in the training dataset. Our model's most distinctive spatial feature is pronounced low geothermal heat flow (< 40 mW m−2) across the North Atlantic Craton of southern Greenland. Crucially, our model does not show an area of elevated heat flow that might be interpreted as remnant from the Icelandic plume track. Finally, we discuss the substantial influence of paleoclimatic and other corrections on geothermal heat flow measurements in Greenland. The in situ measurement database and gridded heat flow model, as well as other supporting materials, are freely available from the GEUS Dataverse (https://doi.org/10.22008/FK2/F9P03L; Colgan and Wansing, 2021).
Abstract. We compile, analyse and map all available geothermal heat flow measurements collected in and around Greenland into a new database of 419 sites and generate an accompanying spatial map. This database includes 290 sites previously reported by the International Heat Flow Commission (IHFC), for which we now standardize measurement and metadata quality. This database also includes 129 new sites, which have not been previously reported by the IHFC. These new sites consist of 88 offshore measurements and 41 onshore measurements, of which 24 are subglacial. We employ machine learning to synthesize these in situ measurements into a gridded geothermal heat flow model that is consistent across both continental and marine areas in and around Greenland. This model has a native horizontal resolution of 55 km. In comparison to five existing Greenland geothermal heat flow models, our model has the lowest mean geothermal heat flow for Greenland onshore areas (44 mW m–2). Our model’s most distinctive spatial feature is pronounced low geothermal heat flow (< 40 mW m–2) across the North Atlantic Craton of southern Greenland. Crucially, our model does not show an area of elevated heat flow that might be interpreted as remnant from the Icelandic Plume track. Finally, we discuss the substantial influence of paleoclimatic and other corrections on geothermal heat flow measurements in Greenland. The in-situ measurement database and gridded heat flow model, as well as other supporting materials, are freely available from the GEUS DataVerse (https://doi.org/10.22008/FK2/F9P03L; Colgan and Wansing, 2021).
Abstract. There is currently poor scientific agreement whether the ice-bed interface is frozen or thawed beneath approximately one-third of the Greenland ice sheet. This disagreement in basal thermal state results, at least partly, from a diversity of opinion in the subglacial geothermal heat flow basal boundary condition employed in different ice-flow models. Here, we employ seven Greenland geothermal heat flow maps in widespread use to 10,000-year spin ups of the Community Ice Sheet Model (CISM). We perform both a fully unconstrained transient spin up, as well as a nudged spin up that conforms to Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) protocol. Across the seven heat flow maps, and regardless of unconstrained or nudged spin up, the spread in basal ice temperatures exceeds 10 °C over large areas of the ice-bed interface. For a given heat flow map, thawed-bedded ice-sheet area is consistently larger under unconstrained spin ups than nudged spin ups. Under the unconstrained spin up, thawed-bedded area ranges from 33.5 to 60.0 % across the seven heat flow maps. Perhaps counterintuitively, the highest iceberg calving fluxes are associated with the lowest heat flows (and vice versa) for both unconstrained and nudged spin ups. This highlights the direct, and non-trivial, influence of choice of heat flow boundary condition on the simulated equilibrium thermal state of the ice sheet. We suggest that future ice-flow model intercomparisons should employ a range of basal heat flow maps, and limit direct intercomparisons to simulations employing a common heat flow map.
<p>Greenland&#8217;s tectonic history is complex, and the resulting lithospheric structure is, although extensively studied, not well constrained. Most models agree regarding the location of the North Atlantic Craton in South Greenland, and the most recent surface heat flow model also predicts a cold lithosphere for that area. However, the velocity anomaly from the regional tomography NAT2021 shows two additional cratonic blocks in North Greenland that are not included in geological maps and previous lithospheric models.&#160;&#160;</p><p>To resolve these differences, we built a lithospheric model for Greenland that is compatible with multiple observables and focuses on data integration. In the first step, a background model is set up that uses petrological information of the mantle to model coherent seismic velocities, densities, and temperatures down to a depth of 400 km. The lithospheric model is then adjusted to reproduce the seismic velocities from NAT2021, the gravity field from satellite data and the isostatic elevation. In a second step, we jointly inverted the residual gravity field data from the lithospheric background model together with airborne magnetic data to estimate the crustal density and susceptibility structure. Both rock properties are coupled with a variation of information coupling constraint that establishes a distinct parameter relationship. To assess the compatibility of the thermal structure of our model with the most recent geothermal heat flow model for Greenland, we perform a grid search for the crustal radiogenic heat production, which would be necessary to reproduce this recent geothermal heat flow map. Finally, the results from the different steps are combined by cluster analysis and compared with petrophysical data from a newly established database of Greenland.</p><p>The iterative workflow provides novel insights into the sub-ice geology of Greenland. We can model three cratonic blocks with LAB depths greater than 200 km and simultaneously fit the gravity, magnetic and elevation data in Greenland and the most recent geothermal heat flow model.&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.