With the change in lifestyle and aging of the population, osteoarthritis (OA) is emerging as a major medical burden globally. OA is a chronic inflammatory and degenerative disease initially manifesting with joint pain and eventually leading to permanent disability. To date, there are no drugs available for the definitive treatment of osteoarthritis and most therapies have been palliative in nature by alleviating symptoms rather than curing the disease. This coupled with the vague understanding of the early symptoms and methods of diagnosis so that the disease continues as a global problem and calls for concerted research efforts. A cascade of events regulates the onset and progression of osteoarthritis starting with the production of proinflammatory cytokines, including interleukin (IL)‐1β, IL‐6, tumor necrosis factor (TNF)‐α; catabolic enzymes, such as matrix metalloproteinases (MMPs)‐1, ‐3, and ‐13, culminating into cartilage breakdown, loss of lubrication, pain, and inability to load the joint. Although intra‐articular injections of small and macromolecules are often prescribed to alleviate symptoms, low residence times within the synovial cavity severely impair their efficacy. This review will briefly describe the factors dictating the onset and progression of the disease, present the current clinically approved methods for its treatment and diagnosis, and finally elaborate on the main challenges and opportunities for the application of nano/micromedicines in the treatment of osteoarthritis. Thus, future treatment regimens will benefit from simultaneous consideration of the mechanobiological, the inflammatory, and tissue degradation aspects of the disease. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement
Introduction: Neuroblastoma (NB) is a form of extracranial tumor derived from the sympathetic nervous system that affects most often infants and young children. It is a very heterogeneous tumor with different levels of aggressiveness. Despite the multiple therapeutic strategies (i.e. aggressive chemotherapy, surgery, radiotherapy, immunotherapy), the outcome in advanced stages or recurrent diseases is negative. New strategies are needed to improve the therapeutic efficacy of existing drugs and reduce their toxicity. Nanotechnology represents a good tool for reaching this goal. Taken this in mind, the focus of this experimental work was to engineer polymeric biodegradable nanomedicines for co-delivering anti-inflammatory and chemotherapeutic molecules to NB malignant masses. More specifically, the work focused on the synthesis, physico-chemical and biopharmaceutical characterization, in vitro testing and in vivo validation of nanomedicines loaded with the cytotoxic drug Docetaxel (DTXL) and the natural anti-inflammatory compound, Curcumin (CURC). Methods: Four configurations of Spherical Polymeric Nanoparticles (SPNs) - loaded with CURC (CURC-SPNs), loaded with DTXL (DTXL-SPNs), loaded with the combination thereof (CURC/DTXL-SPNs), and empty (SPNs) - were synthesized using an oil-in water emulsion/solvent evaporation technique. SPNs size, zeta potential, and polydispersity index (PDI) were measured by dynamic light scattering. The toxicity of SPNs was determined by an MTT assay on the human NB cell line SH-SY5Y. For in vivo efficacy and biodistribution experiments, homozygous CD1 nu/nu athymic female mice (4 to 6-weeks old) were orthotopically injected with SH-SY5Y cells in the left adrenal gland. Results: Empty, DTXL-SPNs, CURC-SPNs, and CURC/DTXL-SPNs were characterized by a narrow size distribution (PdI < 0.15) with an average hydrodynamic diameter of about 185 nm. All the formulations showed a negative surface ζ-potential, associated with the carboxylate groups in the DSPE-PEG coating. A biphasic release profile was observed for all the 3 formulations, with almost 90% of the total drug mass released within the first 24 hours. In vivo results indicated that mice treated with CURC/DTXL -SPNs had a significant increase in life span as compared to untreated mice (control) (p=0.0002), mice treated with CURC-SPNs (p=0.0205), DTXL-SPNs (p=0.0391), and free DTXL (p=0.0054). Biodistribution experiments showed a 2% ID/g accumulation of the injected dose per tumor mass, regardless of the tumor development stage. This behavior is in agreement with results from a longitudinal Magnetic Resonance Imaging analysis of the malignant masses. Conclusion: The obtained results would suggest that nanomedicines could effectively delivery two therapeutic molecules within the malignant mass and modulate its progression leading to a significant increase in overall survival. Citation Format: Agnese Fragassi, Martina Di Francesco, Fabio Pastorino, Miguel Ferreira, Valentina Di Francesco, Anna Lisa Palange, Christian Celia, Luisa Di Marzio, Michele Cilli, Veronica Bensa, Mirco Ponzoni, Paolo Decuzzi. Delivering docetaxel and curcumin via a nano-combination-therapy for modulating the progression of neuroblastoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5069.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.