Addressing the effects of confinement and crowding on biomolecular function may provide insight into molecular mechanisms within living organisms, and may promote the development of novel biotechnology tools. Here, using molecular manipulation methods, we investigate restriction enzyme reactions with double-stranded (ds)DnA oligomers confined in relatively large (and flat) brushy matrices of monolayer patches of controlled, variable density. We show that enzymes from the contacting solution cannot access the dsDnAs from the topmatrix interface, and instead enter at the matrix sides to diffuse two-dimensionally in the gap between top-and bottom-matrix interfaces. This is achieved by limiting lateral access with a barrier made of high-density molecules that arrest enzyme diffusion. We put forward, as a possible explanation, a simple and general model that relates these data to the steric hindrance in the matrix, and we briefly discuss the implications and applications of this strikingly new phenomenon.
Microwave microscopy has recently attracted intensive effort, owing to its capability to provide quantitative information about the local composition and the electromagnetic response of a sample. Nonetheless, the interpretation of microwave images remains a challenge as the electromagnetic waves interact with the sample and the surrounding in a multitude of ways following different paths: microwave images are a convolution of all contributions. In this work we show that examining the time evolution of the electromagnetic waves allows us to disentangle each contribution, providing images with striking quality and unexplored scenarios for near-field microscopy.
BackgroundSubtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR) volumes can result in images that depict and accurately characterize a variety of liver lesions. However, the diagnostic utility of subtraction images depends on the extent of co-registration between non-enhanced and enhanced volumes. Movement of liver structures during acquisition must be corrected prior to subtraction. Currently available methods are computer intensive. We report a new method for the dynamic subtraction of MR liver images that does not require excessive computer time.MethodsNineteen consecutive patients (median age 45 years; range 37–67) were evaluated by VIBE T1-weighted sequences (TR 5.2 ms, TE 2.6 ms, flip angle 20°, slice thickness 1.5 mm) acquired before and 45s after contrast injection. Acquisition parameters were optimized for best portal system enhancement. Pre and post-contrast liver volumes were realigned using our 3D registration method which combines: (a) rigid 3D translation using maximization of normalized mutual information (NMI), and (b) fast 2D non-rigid registration which employs a complex discrete wavelet transform algorithm to maximize pixel phase correlation and perform multiresolution analysis. Registration performance was assessed quantitatively by NMI.ResultsThe new registration procedure was able to realign liver structures in all 19 patients. NMI increased by about 8% after rigid registration (native vs. rigid registration 0.073 ± 0.031 vs. 0.078 ± 0.031, n.s., paired t-test) and by a further 23% (0.096 ± 0.035 vs. 0.078 ± 0.031, p < 0.001, paired t-test) after non-rigid realignment. The overall average NMI increase was 31%.ConclusionThis new method for realigning dynamic contrast-enhanced 3D MR volumes of liver leads to subtraction images that enhance diagnostic possibilities for liver lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.