The Semantic Web and Internet of Things visions are converging toward the so-called Semantic Web of Things (SWoT). It aims to enable smart semantic-enabled applications and services in ubiquitous contexts. Due to architectural and performance issues, it is currently impractical to use existing Semantic Web reasoners. They are resource consuming and are basically optimized for standard inference tasks on large ontologies. On the contrary, SWoT use cases generally require quick decision support through semantic matchmaking in resource-constrained environments. This paper presents Mini-ME, a novel mobile inference engine designed from the ground up for the SWoT. It supports Semantic Web technologies and implements both standard (subsumption, satisfiability, classification) and non-standard (abduction, contraction, covering) inference services for moderately expressive knowledge bases. In addition to an architectural and functional description, usage scenarios are presented and an experimental performance evaluation is provided both on a PC testbed (against other popular Semantic Web reasoners) and on a smartphone.
New Internet of Things (IoT) applications and services more and more rely on an intelligent understanding of the environment from data gathered via heterogeneous sensors and micro-devices. Though increasingly effective, Machine Learning (ML) techniques generally do not go beyond classification of events with opaque labels, lacking meaningful representations and explanations of taxonomies. This paper proposes a framework for a semantic-enhanced data mining on sensor streams, amenable to resource-constrained pervasive contexts. It merges an ontology-based characterization of data distributions with non-standard reasoning for a fine-grained event detection by treating the typical classification problem of ML as a resource discovery. Outputs of classification are endowed with machine-understandable descriptions in standard Semantic Web languages, while explanation of matchmaking outcomes motivates confidence on results. A case study on road and traffic analysis allowed to validate the proposal and achieve an assessment with respect to state-of-the-art ML algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.