Huntington disease (HD) is a devastating, late-onset, inherited neurodegenerative disorder that manifests with personality changes, movement disorders, and cognitive decline. It is caused by a CAG repeat expansion in exon 1 of the HTT gene that translates to a polyglutamine tract in the huntingtin protein (HTT). The formation of HTT fragments has been implicated as an essential step in the molecular pathogenesis of HD and several proteases that cleave HTT have been identified. However, the importance of smaller N-terminal fragments has been highlighted by their presence in HD postmortem brains and by the fact that nuclear inclusions are only detected by antibodies to the N terminus of HTT. Despite an intense research effort, the precise length of these fragments and the mechanism by which they are generated remains unknown. Here we show that CAG repeat lengthdependent aberrant splicing of exon 1 HTT results in a short polyadenylated mRNA that is translated into an exon 1 HTT protein. Given that mutant exon 1 HTT proteins have consistently been shown to be highly pathogenic in HD mouse models, the aberrant splicing of HTT mRNA provides a mechanistic basis for the molecular pathogenesis of HD. RNA-targeted therapeutic strategies designed to lower the levels of HTT are under development. Many of these approaches would not prevent the production of exon 1 HTT and should be reviewed in light of our findings.exon 1 huntingtin | huntingtin fragment | mis-splicing | SRSF6
Highlights d Conduit flow becomes locally intermittent during lymph node expansion d Fibroblastic reticular cells use polarized microtubules to guide matrix deposition d The CLEC-2/PDPN signaling axis controls conduit matrix composition d Fibroblastic reticular cells reduce matrix production during lymph node expansion
Huntington’s disease is caused by a CAG repeat expansion in exon 1 of the HTT gene. We have previously shown that exon 1 HTT does not always splice to exon 2 producing a small transcript (HTTexon1) that encodes the highly pathogenic exon 1 HTT protein. The mechanisms by which this incomplete splicing occurs are unknown. Here, we have generated a minigene system that recapitulates the CAG repeat-length dependence of HTTexon1 production, and has allowed us to define the regions of intron 1 necessary for incomplete splicing. We show that manipulation of the expression levels of the splicing factor SRSF6, predicted to bind CAG repeats, modulates this aberrant splicing event and also demonstrate that RNA polymerase II transcription speed regulates the levels of HTTexon1 production. Understanding the mechanisms by which this pathogenic exon 1 HTT is generated may provide the basis for the development of strategies to prevent its production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.