BackgroundOrganotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer’s disease (AD). AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs), surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S.Methodology/Principal FindingsIn this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1) and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH)- and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue.Conclusion/SignificanceUntil now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study provides evidence that adult organotypic brain slice cultures from 7- to 10-month-old mice independently of the transgenic modification undergo slow programmed cell death, caused by a dysfunction of the neuronal repair systems.
Understanding of cell migration and spreading out of tumor tissue is of great interest concerning the mechanism and causes of tumor malignancy and metastases. Although there are methods available for studying cell migration on monolayer cell cultures like transwell assays, novel techniques for monitoring cell spreading out of 3D organoids or tumor tissue samples are highly required. In this context, we developed an innovative high-dense microelectrode array for impedimetric monitoring of cell migration from 3D tumor cultures. For a proof of concept, a strongly migrating breast cancer cell line (MDA-MB-231) and two malignant melanoma cell lines (T30.6.9, T12.8.10ZII) were used for generating viable micro-tumor models. The migration propensity was determined by impedimetric monitoring over 144 hours, correlated by microscopy and validated by transwell assays. The impedimetric analysis of covered electrodes and the relative impedance maximum values revealed extended information regarding the contribution of proliferative effects. More strikingly, using reference populations of mitomycin C treated spheroids where proliferation was suppressed, distinction of proliferation and migration was possible. Therefore, our high-dense microelectrode array based impedimetric migration monitoring has the capability for an automated quantitative analysis system that can be easily scaled up as well as integrated in lab on chip devices.
Intracellular neurofibrillary tangles and extracellular senile plaques are potential targets for active and passive immunotherapies. In this study we used the transgenic mouse model P301S for active immunizations with peptide vaccines composed of a double phosphorylated tau neoepitope (pSer202/pThr205, pThr212/pSer214, pThr231/pSer235) and an immunomodulatory T cell epitope from the tetanus toxin or tuberculosis antigen Ag85B. Importantly, the designed vaccine combining Alzheimer’s disease (AD) specific B cell epitopes with foreign (bacterial) T cell epitopes induced fast immune responses with high IgG1 titers after prophylactic immunization that subsequently decreased over the observation period. The effectiveness of the immunization was surveyed by evaluating the animal behavior, as well as the pathology in the brain by biochemical and histochemical techniques. Immunized mice clearly lived longer with reduced paralysis than placebo-treated mice. Additionally, they performed significantly better in rotarod and beam walk tests at the age of 20 weeks, indicating that the disease development was slowed down. Forty-eight weeks old vaccinated mice passed the beam walk test significantly better than control animals, which together with the increased survival rates undoubtedly prove the treatment effect. In conclusion, the data provide strong evidence that active immune therapies can reduce toxic effects of deposits formed in AD.
Background:There is an open controversy about the role of surgery and anesthesia in the pathogenesis of Alzheimer's disease (AD). Clinical studies have shown a high prevalence of these procedures in subjects with AD but the interpretation of these studies is difficult because of the co-existence of multiple variables. Experimental studies in vitro and in vivo have shown that small molecular weight volatile anesthetics enhance amyloidogenesis in vitro and produce behavioral deficits and brain lesions similar to those found in patients with AD. Methods: We examined the effect of co-treatment with trehalose on isoflurane-induced amyloidogenesis in mice. WT and APPswe mice, of 11 months of age, were exposed to 1% isoflurane, 3 times, for 1.5 hours each time and sacrificed 24 hours after their last exposure to isoflurane. The right hemi-brain was used for histological analysis and the contra-lateral hemi-brain used for biochemical studies. Results: In this study, we have shown that repetitive exposure to isoflurane in pre-symptomatic mature APPswe mice increases apoptosis in hippocampus and cerebral cortex, enhances astrogliosis and the expression of GFAP and that these effects are prevented by co-treatment with trehalose, a disaccharide with known effects as enhancer of autophagy. We have also confirmed that in our model the co-treatment with trehalose increases the expression of autophagic markers, as well as the expression of chaperones. Conclusions: Co-treatment with trehalose reduces the levels of beta-amyloid peptide aggregates, tau plaques and levels of phospho-tau. Our study, therefore, provides new therapeutic avenues that could help to prevent the putative pro-amyloidogenic properties of small volatile anesthetics. Supported by: FIS 2010/172, La ın Entralgo NDG07/4, CAM 02/02/2006, and CIBERNed 2006/05/059 and 2010.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.