CD133 is a cell surface marker expressed on progenitors of haematopoietic and endothelial cell lineages. Moreover, several studies have identified CD133 as a marker of brain tumor-initiating cells. In this study, human glioblastoma multiforme biopsies were engrafted intracerebrally into nude rats. The resulting tumors were serially passaged in vivo, and monitored by magnetic resonance imaging. CD133 expression was analyzed at various passages. Tumors initiated directly from the biopsies expressed little or no CD133, and showed no contrast enhancement suggesting an intact blood-brain barrier. During passaging, the tumors gradually displayed more contrast enhancement, increased angiogenesis and a shorter survival. Real-time qPCR and immunoblots showed that this was accompanied by increased CD133 expression. Primary biopsy spheroids and xenograft tumors were subsequently dissociated and flow sorted into CD133 negative and CD133 positive cell populations. Both populations incorporated BrdU in cell culture, and expressed the neural precursor marker nestin. Notably, CD133 negative cells derived from 6 different patients were tumorgenic when implanted into the rat brains. For 3 of these patients, analysis showed that the resulting tumors contained CD133 positive cells. In conclusion, we show that CD133 negative glioma cells are tumorgenic in nude rats, and that CD133 positive cells can be obtained from these tumors. Upon passaging of the tumors in vivo, CD133 expression is upregulated, coinciding with the onset of angiogenesis and a shorter survival. Thus, our findings do not suggest that CD133 expression is required for brain tumor initiation, but that it may be involved during brain tumor progression. ' 2007 Wiley-Liss, Inc.Key words: CD133; brain cancer; angiogenesis; cancer stem cell; xenograft At present, there is a search for tumor cell subpopulations that may be responsible for tumor initiation and progression. Such cells have been termed cancer stem cells and are defined by their capacity to self-renew, express stem cell markers and to initiate tumors in vivo. 1,2 Potential cancer stem cells have been identified in leukaemias, 3-5 breast, 6 prostate, 7 bone, 8 colon and brain cancer. [9][10][11][12][13] In some cases, these tumor-initiating cells have been distinguished from the non-tumor-initiating ones based on expression of cell surface markers. For instance, it has been shown that only CD44 1 / CD24 2 /Lineage 2 breast cancer cells are tumorgenic in animals. 6 In malignant brain tumors, CD133 has been suggested to be a cancer stem cell marker 11,14 since only CD133 positive cells from brain tumor biopsy material were able to initiate brain cancer in a mouse model. 14 Prominin-1 (PROM-1), also called CD133, is a protein with several isoforms of unknown physiological or pathological function, and is localized both in the cytoplasm and at the cell surface. 15,16 It is expressed by human neural stem cells and has been proposed to have a function in central nervous system (CNS) development. 17 It is also express...
Human mesenchymal stem cells (hMSC) aid in tissue maintenance and repair by differentiating into specialized cell types. Due to this ability, hMSC are currently being evaluated for cell-based therapies of tissue injury and degenerative diseases. However, extensive expansion ex vivo is a prerequisite to obtain the cell numbers required for human cell-based therapy protocols. Recent studies indicate that hMSC may contribute to cancer development and progression either by acting as cancer-initiating cells or through interactions with stromal elements. If spontaneous transformation ex vivo occurs, this may jeopardize the use of hMSC as therapeutic tools. Whereas murine MSC readily undergo spontaneous transformation, there are conflicting reports about spontaneous transformation of hMSC. We have addressed this controversy in a two-center study by growing bone marrow-derived hMSC in long-term cultures (5-106 weeks). We report for the first time spontaneous malignant transformation to occur in 45.8% (11 of 24) of these cultures. In comparison with hMSC, the transformed mesenchymal cells (TMC) showed a significantly increased proliferation rate and altered morphology and phenotype. In contrast to hMSC, TMC grew well in soft agar assays and were unable to undergo complete differentiation. Importantly, TMC were highly tumorigenic, causing multiple fastgrowing lung deposits when injected into immunodeficient mice. We conclude that spontaneous malignant transformation may represent a biohazard in long-term ex vivo expansion of hMSC. On the other hand, this spontaneous transformation process may represent a unique model for studying molecular pathways initiating malignant transformation of hMSC. [Cancer Res 2009;69(13):5331-9]
Chemoresistance represents a major problem in the treatment of many malignancies. Overcoming this obstacle will require improved understanding of the mechanisms responsible for this phenomenon. The progenitor cell marker NG2/melanoma proteoglycan (MPG) is aberrantly expressed by various tumors, but its role in cell death signaling and its potential as a therapeutic target are largely unexplored. We have assessed cytotoxic druginduced cell death in glioblastoma spheroids from 15 patients, as well as in five cancer cell lines that differ with respect to NG2/MPG expression. The tumors were treated with doxorubicin, etoposide, carboplatin, temodal, cisplatin and tumor necrosis factor (TNF)a. High NG2/ MPG expression correlated with multidrug resistance mediated by increased activation of a3b1 integrin/PI3K signaling and their downstream targets, promoting cell survival. NG2/MPG knockdown with shRNAs incorporated into lentiviral vectors attenuated b1 integrin signaling revealing potent antitumor effects and further sensitized neoplastic cells to cytotoxic treatment in vitro and in vivo. Thus, as a novel regulator of the antiapoptotic response, NG2/MPG may represent an effective therapeutic target in several cancer subtypes.
Glioblastoma (GBM) is a highly aggressive brain tumour, where patients respond poorly to radiotherapy and exhibit dismal survival outcomes. The mechanisms of radioresistance are not completely understood. However, cancer cells with an immature stem-like phenotype are hypothesised to play a role in radioresistance. Since the progenitor marker neuron-glial-2 (NG2) has been shown to regulate several aspects of GBM progression in experimental systems, we hypothesised that its expression would influence the survival of GBM patients. Quantification of NG2 expression in 74 GBM biopsies from newly diagnosed and untreated patients revealed that 50% express high NG2 levels on tumour cells and associated vessels, being associated with significantly shorter survival. This effect was independent of age at diagnosis, treatment received and hypermethylation of the O6-methylguanine methyltransferase (MGMT) DNA repair gene promoter. NG2 was frequently co-expressed with nestin and vimentin but rarely with CD133 and the NG2 positive tumour cells harboured genetic aberrations typical for GBM. 2D proteomics of 11 randomly selected biopsies revealed upregulation of an antioxidant, peroxiredoxin-1 (PRDX-1), in the shortest surviving patients. Expression of PRDX-1 was associated with significantly reduced products of oxidative stress. Furthermore, NG2 expressing GBM cells showed resistance to ionising radiation (IR), rapidly recognised DNA damage and effectuated cell cycle checkpoint signalling. PRDX-1 knockdown transiently slowed tumour growth rates and sensitised them to IR in vivo. Our data establish NG2 as an important prognostic factor for GBM patient survival, by mediating resistance to radiotherapy through induction of ROS scavenging enzymes and preferential DNA damage signalling.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-011-0867-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.