Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods: Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results: Only two changes were made to clinical diagnostic criteria reported in 2013: "multiple cortical tubers and/or radial migration lines" replaced the more general term "cortical dysplasias," and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSCassociated neuropsychiatric disorders, and new medication approvals. Conclusions: Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families.
Tuberous sclerosis complex (TSC) is an autosomal dominant, multisystem disorder, which affects 1 in 6000 people. About half of these patients are affected by mental retardation, which has been associated with TSC2 mutations, epilepsy severity and tuber burden. The bimodal intelligence distribution in TSC populations suggests the existence of subgroups with distinct pathophysiologies, which remain to be identified. Furthermore, it is unknown if heterozygous germline mutations in TSC2 can produce the neurocognitive phenotype of TSC independent of epilepsy and tubers. Genotype-phenotype correlations may help to determine risk profiles and select patients for targeted treatments. A retrospective chart review was performed, including a large cohort of 137 TSC patients who received intelligence assessment and genetic mutation analysis. The distribution of intellectual outcomes was investigated for selected genotypes. Genotype-neurocognitive phenotype correlations were performed and associations between specific germline mutations and intellectual outcomes were compared. Results showed that TSC1 mutations in the tuberin interaction domain were significantly associated with lower intellectual outcomes (Po0.03), which was also the case for TSC2 protein-truncating and hamartin interaction domain mutations (both Po0.05). TSC2 missense mutations and small in-frame deletions were significantly associated with higher IQ/DQs (Po0.05). Effects related to the mutation location within the TSC2 gene were found. These findings suggest that TSC2 protein-truncating mutations and small in-frame mutations are associated with distinctly different intelligence profiles, providing further evidence that different types and locations of TSC germline mutations may be associated with distinct neurocognitive phenotypes.
Aim As relationships between autistic traits, epilepsy, and cognitive functioning remain poorly understood, these associations were explored in the biologically related disorders tuberous sclerosis complex (TSC), neurofibromatosis type 1 (NF1), and epilepsy. Method The Social Responsiveness Scale (SRS), a quantitative measure of autistic traits, was distributed to caregivers or companions of patients with TSC, NF1, and childhood-onset epilepsy of unknown cause (EUC), and these results were compared with SRS data from individuals with idiopathic autism spectrum disorders (ASDs) and their unaffected siblings. Scores and trait profiles of autistic features were compared with cognitive outcomes, epilepsy variables, and genotype. Results A total of 180 SRS questionnaires were filled out in the TSC, NF1, and EUC outpatient clinics at the Massachusetts General Hospital (90 females, 90 males; mean age 21y, range 4–63y), and SRS data from 210 patients with ASD recruited from an autism research collaboration (167 males, 43 females; mean age 9y range 4–22y) and 130 unaffected siblings were available. Regression models showed a significant association between SRS scores and intelligence outcomes (p<0.001) and various seizure variables (p<0.02), but not with a specific underlying disorder or genotype. The level of autistic features was strongly associated with intelligence outcomes in patients with TSC and epilepsy (p<0.01); in patients with NF1 these relationships were weaker (p=0.25). For all study groups, autistic trait subdomains covaried with neurocognitive comorbidity, with endophenotypes similar to that of idiopathic autism. Interpretation Our data show that in TSC and childhood-onset epilepsy, the severity and phenotype of autistic features are inextricably linked with intelligence and epilepsy outcomes. Such relationships were weaker for individuals with NF1. Findings suggest that ASDs are not specific for these conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.