The objective of this study is to investigate the possibility of enhancing mechanical properties of poly(lactic acid) (PLA) samples processed by a rapid manufacturing (RM) technique by increasing PLA crystallinity degree via thermal annealing. The samples are manufactured by fused deposition modeling (FDM) at different temperatures and subsequently evaluated by three‐point bending flexural and tensile tests. The polymer processed at 215 °C is thermally annealed over its glass transition temperature in order to increase the degree of crystallinity to the maximum attainable level as measured by the differential scanning calorimetry and confirmed by X‐ray diffraction. The increase in the degree of crystallinity of FDM‐PLA enhances flexural stress of the samples by 11–17%. The study also demonstrates applicability of radiation sterilization for FDM‐PLA parts. Therefore, thermal annealing might be introduced into a standard RM technology of PLA, particularly for sterilizable customized implants, to efficiently improve their mechanical properties.
Rigid polyurethane (PUR) foams reinforced with 1, 2, and 5 wt.% of salvia filler (SO filler) and montmorillonite-modified salvia filler (MMT-modified SO filler) were produced in the following study. The impact of 1, 2, and 5 wt.% of SO filler and MMT-modified SO filler on the morphological, chemical, and mechanical properties of PUR composites were examined. In both cases, the addition of 1 and 2 wt.% of SO fillers resulted in the synthesis of PUR composites with improved physicomechanical properties, while the addition of 5 wt.% of SO fillers resulted in the formation of PUR composites with a less uniform structure and, therefore, some deterioration in their physicomechanical performances. Moreover, the results showed that the modification of SO filler with MMT improved the interphase compatibility between filler surface and PUR matrix. Therefore, such reinforced PUR composites were characterized by a well-developed closed-cell structure and improved mechanical, thermal, and flame-retardant performances. For example, when compared with reference foam, the addition of 2 wt.% of MMT-modified SO filler resulted in the formation of PUR composites with greater mechanical properties (compressive strength, flexural strength) and improved dynamic-mechanical properties (storage modulus). The PUR composites were characterized by better thermal stability as well as improved flame retardancy—e.g., decreased peak rate of heat release (pHRR), reduced total smoke release (TSR), and increased limiting oxygen index (LOI).
Rigid polyurethane foams (RPUFs) were successfully modified with different weight ratios (0.5 wt%, 1.5 wt% and 5 wt%) of APIB-POSS and AEAPIB-POSS. The resulting foams were evaluated by their processing parameters, morphology (Scanning Electron Microscopy analysis, SEM), mechanical properties (compressive test, three-point bending test and impact strength), viscoelastic behavior (Dynamic Mechanical Analysis, DMA), thermal properties (Thermogravimetric Analysis, TGA, and thermal conductivity) and application properties (contact angle, water absorption and dimensional analysis). The results showed that the morphology of modified foams is significantly affected by the type of the filler and filler content, which resulted in inhomogeneous, irregular, large cell shapes and further affected the physical and mechanical properties of resulting materials. RPUFs modified with APIB-POSS represent better mechanical and thermal properties compared to the RPUFs modified with AEAPIB-POSS. The results showed that the best results were obtained for RPUFs modified with 0.5 wt% of APIB-POSS. For example, in comparison with unfilled foam, compositions modified with 0.5 wt% of APIB-POSS provide greater compression strength, better flexural strength and lower water absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.