A short G1 phase is a characteristic feature of mouse embryonic stem cells (ESCs). To determine if there is a causal relationship between G1 phase restriction and pluripotency, we made use of the Fluorescence Ubiquitination Cell Cycle Indicator (FUCCI) reporter system to FACS-sort ESCs in the different cell cycle phases. Hence, the G1 phase cells appeared to be more susceptible to differentiation, particularly when ESCs self-renewed in the naïve state of pluripotency. Transitions from ground to naïve, then from naïve to primed states of pluripotency were associated with increased durations of the G1 phase, and cyclin E-mediated alteration of the G1/S transition altered the balance between self-renewal and differentiation. LIF withdrawal resulted in a lengthening of the G1 phase in naïve ESCs, which occurred prior to the appearance of early lineage-specific markers, and could be reversed upon LIF supplementation. We concluded that the short G1 phase observed in murine ESCs was a determinant of naïve pluripotency and was partially under the control of LIF signaling.
Infection with high-risk human papillomaviruses (HPV) can lead to the development of cervical cancer. This process depends on the interaction of the virus-encoded oncoproteins, E6 and E7, with a variety of host regulatory proteins. As E7 shares both functional and structural similarities with the Adenovirus E1a (Ad E1a) protein, we were interested in investigating the possible interactions between E7 and the transcriptional coactivator p300, since it was originally identified as a target of Ad E1a. Using a variety of assays, we show that E7s from both high-and low-risk HPV types interact with p300. Mutational analysis of E7 maps the site of the interaction to a region spanning the pRb-binding domain and the CKII phosphorylation site. We also map the site of interaction on p300 largely to the CH1 domain. In addition, we demonstrate that the binding between 16E7 and p300 is direct, and can be detected in vivo by coimmunoprecipitation and mammalian two-hybrid assays. Finally, we show that E7 can abolish the p300-mediated E2 transactivation function, suggesting that complex formation between E7 and p300 may contribute to the regulation of E2 transcriptional activity.
The development of transgenic technologies in monkeys is important for creating valuable animal models of human physiology so that the etiology of diseases can be studied and potential therapies for their amelioration may be developed. However, the efficiency of producing transgenic primate animals is presently very low, and there are few reports of success. We have developed an improved methodology for the production of transgenic rhesus monkeys, making use of a simian immunodeficiency virus (SIV)-based vector that encodes EGFP and a protocol for infection of early-cleavagestage embryos. We show that infection does not alter embryo development. Moreover, the timing of infection, either before or during embryonic genome activation, has no observable effect on the level and stability of transgene expression. Of 70 embryos injected with concentrated virus at the one-to two-cell stage or the four-to eight-cell stage and showing fluorescence, 30 were transferred to surrogate mothers. One transgenic fetus was obtained from a fraternal triple pregnancy. Four infant monkeys were produced from four singleton pregnancies, of which two expressed EGFP throughout the whole body. These results demonstrate the usefulness of SIV-based lentiviral vectors for the generation of transgenic monkeys and improve the efficiency of transgenic technology in nonhuman primates. lentiviral vector | transgenesis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.