In the age of the impending climate crisis, and further forecast ecological catastrophes, humankind has begun to think with growing interest about replacing existing energy sources with renewable ones. An increasing number of people have begun to discuss the need to implement registries that collect information about the energy potential of specific parts of the environment we live in. Additionally, the simultaneous registration of installations used for obtaining energy from alternative sources is desirable. In addition to quantitative attributes, such databases should also contain comprehensive spatial information. Since, in the era of globalization, the creation of such databases ought to be standardized, the purpose of this study is to indicate the directions in which the cadastre of renewable energy sources should be developed by: (i) reviewing the solutions of renewable energy sources that have been described in the scientific literature; (ii) analyzing the content of selected geoportals containing data on renewable energy sources. The literature review was preceded by a detailed bio-metric analysis, whereas the content analysis of the geoportals led to the creation of a flow chart containing a proposal for a renewable energy source cadastre, and a ranking of the analyzed portals. Nevertheless, the conceptual work was limited to the solar cadastre only.
This paper presents the concepts of a probabilistic model for storm overflow discharges, in which arbitrary dynamics of the catchment urbanization were included in the assumed period covered by calculations. This model is composed of three components. The first constitutes the classification model for the forecast of storm overflow discharges, in which its operation was related to rainfall characteristics, catchment retention, as well as the degree of imperviousness. The second component is a synthetic precipitation generator, serving for the simulation of long-term observation series. The third component of the model includes the functions of dynamic changes in the methods of the catchment development. It allows for the simulation of changes in the extent of imperviousness of the catchment in the long-term perspective. This is an important advantage of the model, because it gives the possibility of forecasting (dynamic control) of catchment retention, accounting for the quantitative criteria and their potential changes in the long-term perspective in relation to the number of storm overflows. Analyses carried out in the research revealed that the empirical coefficients included in the logit model have a physical interpretation, which makes it possible to apply the obtained model to other catchments. The paper also shows the use of the prepared probabilistic model for rational catchment management, with respect to the forecasted number of storm overflow discharges in the long-term and short-term perspective. The model given in the work can be also applied to the design and monitoring of catchment retention in such a way that in the progressive climatic changes and urbanization of the catchment, the number of storm overflow discharges remains within the established range.
Road transport is one among the sources of air pollution in a city, which results in lowering the comfort of life and increases the occurrence of respiratory diseases. The level of pollutants emitted in the city is variable, and it depends on the type and nature of the source and the manner of land development. For this reason, the purpose of the article is an attempt at a spatial (inner) diversification of a city in terms of air quality, using a study of perception and semantic differentials (SD). The research, which covered the period from June to November 2021, was performed in Kielce—the Polish Smart City—among local experts, people well acquainted with the city and knowledgeable about air quality and the impact of pollution on human health. The results allowed the demarcation of areas with the best and the worst parameters in terms of air quality within the city. Verification of the survey was carried out using the ADMS-Roads (Atmospheric Dispersion Modeling System) software for modeling pollution levels and GIS software, using data on road traffic. The verification allowed checking whether the respondents participating in the research accurately evaluated the city space. The modeling proved that within the two selected areas, the pollution level is similar, and it does not exceed the permitted values. This might indicate that in society there is still low awareness of air quality, particularly in terms of knowing the sources of pollutants and their impact on human health, and perception of areas with the best and the worst air quality was the result of an analysis of the manner of land development and its morphology.
The increase in population and the growing demand for food that accompanies it drive the need to achieve sustainable agriculture. Technological progress and methodological novelties provide tools that may support the processes of improving the spatial structure of agricultural lands, as well as their management. One of the examples may be the application of photogrammetric and remote-sensing products to facilitate land consolidation. In the following paper, the systematised procedure of conduct is investigated to determine the moments at which these products could be adopted. In identifying the possibilities for implementing the abovementioned tools, we analyse the legal regulations governing the process and the literature on the subject, as well as some practical examples encountered in surveying practice. In addition, the usefulness of such geospatial products is tested on data gathered during an exemplary UAV flight. We then investigate the issues with implementing the abovementioned tools and assess their advantages and disadvantages in smart agriculture. The research proves that reliable elaboration of the consolidation project concept is critical for its correct realisation, while modern measurement methods providing efficient, up-to-date, factual data facilitate the procedures and support rational decision making. Moreover, they enable us to ensure the necessary accuracy of the data for the scope of the land use and avoid analysing a compilation of several cartographic materials concerning the surveyed object. In the present study, the RMSExyz mean square error at the control points for the orthomosaic, generated using the Matrice 210 RTK v2 professional flying platform, is 5.6 cm, while for the orthomosaic created from images from the amateur drone Mavic 2 Pro RMSExyz, it is 9.2 cm. The results obtained also indicate the usefulness of low-budget drones during the land consolidation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.