The risk of developing papillary thyroid carcinoma (PTC), the most frequent form of thyroid malignancy, is elevated up to 8.6-fold in first-degree relatives of PTC patients. The familial risk could be explained by high-penetrance mutations in yet unidentified genes, or polygenic action of low-penetrance alleles. Since the DNA-damaging exposure to ionizing radiation is a known risk factor for thyroid cancer, polymorphisms in DNA repair genes are likely to affect this risk. In a search for low-penetrance susceptibility alleles we employed Sequenom technology to genotype deleterious polymorphisms in ATM, CHEK2, and BRCA1 in 1,781 PTC patients and 2,081 healthy controls. As a result of the study, we identified CHEK2 rs17879961 (OR = 2.2, P = 2.37e-10) and BRCA1 rs16941 (odds ratio [OR] = 1.16, P = 0.005) as risk alleles for PTC. The ATM rs1801516 variant modifies the risk associated with the BRCA1 variant by 0.78 (P = 0.02). Both the ATM and BRCA1 variants modify the impact of male gender on clinical variables: T status (P = 0.007), N status (P = 0.05), and stage (P = 0.035). Our findings implicate an important role of variants in the ATM- CHEK2- BRCA1 axis in modification of the genetic predisposition to PTC and its clinical manifestations.
Retinoic acid is a promising tool in adjuvant cancer therapies, including refractory thyroid cancer, and its biological role is mediated by the retinoic acid receptor beta (RARβ). However, expression of RARβ is lowered in papillary thyroid carcinoma (PTC), contributing to promotion of tumor growth and inefficiency of retinoic acid and radioactive iodine treatment. The causes of aberrant RARB expression are largely unknown. We hypothesized that the culpable mechanisms include the action of microRNAs from the miR-146 family, previously identified as significantly upregulated in PTC tumors. To test this hypothesis, we assessed the expression of RARB as well as miR-146a-5p and miR-146b-5p in 48 PTC tumor/normal tissue pairs by Taqman assay to reveal that the expression of RARB was 3.28-fold decreased, and miR-146b-5p was 28.9-fold increased in PTC tumors. Direct interaction between miRs and RARB was determined in the luciferase assay and further confirmed in cell lines, where overexpression of miR-146a-5p and miR-146b-5p caused a 31% and 33% decrease in endogenous RARB mRNA levels. Inhibition of miR-146a and miR-146b resulted in 62.5% and 45.4% increase of RARB, respectively, and a concomitant decrease in proliferation rates of thyroid cancer cell lines, analyzed in xCELLigence system.We showed that two microRNAs of the miR-146 family directly regulate RARB. Inhibition of miRs resulted in restoration of RARB expression and decreased rates of proliferation of thyroid cancer cells. By restoring RARB levels, microRNA inhibitors may become part of an adjuvant therapy in thyroid cancer patients.
The risk of developing papillary thyroid carcinoma (PTC), the most frequent form of thyroid malignancy, is elevated up to 8.6-fold in first-degree relatives of PTC patients. The familial risk could be explained by high-penetrance mutations in yet unidentified genes, or polygenic action of low-penetrance alleles. Since the DNA-damaging exposure to ionizing radiation is a known risk factor for thyroid cancer, polymorphisms in DNA repair genes are likely to affect this risk. In a search for low-penetrance susceptibility alleles we employed Sequenom technology to genotype deleterious polymorphisms in ATM, CHEK2, and BRCA1 in 1,781 PTC patients and 2,081 healthy controls. As a result of the study, we identified CHEK2 rs17879961 (OR 5 2.2, P 5 2.37e-10) and BRCA1 rs16941 (odds ratio [OR] 5 1.16, P 5 0.005) as risk alleles for PTC. The ATM rs1801516 variant modifies the risk associated with the BRCA1 variant by 0.78 (P 5 0.02). Both the ATM and BRCA1 variants modify the impact of male gender on clinical variables: T status (P 5 0.007), N status (P 5 0.05), and stage (P 5 0.035). Our findings implicate an important role of variants in the ATM-CHEK2-BRCA1 axis in modification of the genetic predisposition to PTC and its clinical manifestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.