Background: Literacy acquisition is a demanding process that induces significant changes in the brain, especially in the spoken and written language networks. Nevertheless, large-scale paediatric fMRI studies are still limited. Methods: We analyzed fMRI data to show how individual differences in reading performance correlate with brain activation for speech and print in 111 children attending kindergarten or first grade and examined group differences between a matched subset of emergent-readers and prereaders. Results: Across the entire cohort, individual differences analysis revealed that reading skill was positively correlated with the magnitude of activation difference between words and symbol strings in left superior temporal, inferior frontal and fusiform gyri. Group comparisons of the matched subset of pre-and emergent-readers showed higher activity for emergent-readers in left inferior frontal, precentral, and postcentral gyri. Individual differences in activation for natural versus vocoded speech were also positively correlated with reading skill, primarily in the left temporal cortex. However, in contrast to studies on adult illiterates, group comparisons revealed higher activity in prereaders compared to readers in the frontal lobes. Print-speech coactivation was observed only in readers and individual differences analyses revealed a positive correlation between convergence and reading skill in the left superior temporal sulcus. Conclusions: These results emphasise that a child's brain undergoes several modifications to both visual and oral language systems in the process of learning to read. They also suggest that print-speech convergence is a hallmark of acquiring literacy.
In alphabetic scripts, learning letter-sound (LS) association (i.e., letter knowledge) is a strong predictor of later reading skills. LS integration is related to left superior temporal cortex (STC) activity and its disruption was previously observed in dyslexia (DYS). Whether disruption in LS association is a cause of reading impairment or a consequence of decreased exposure to print remains unclear. Using fMRI, we compared activation for letters, speech sounds and LS association in emerging readers with (FHD+, N = 50) and without (FHD−, N = 35) familial history of DYS, out of whom 17 developed DYS 2 years later. Despite having similar reading skills, FHD+ and FHD− groups showed opposite pattern of activation in left STC: In FHD− children activation was higher for incongruent compared to congruent, whereas in FHD+ it was higher for congruent LS pairs. Higher activation to congruent LS pairs was also characteristic of future DYS. The magnitude of incongruency effect in left STC was positively related to early reading skills, but only in FHD− children and (retrospectively) in typical readers. We show that alterations in brain activity during LS association can be detected at very early stages of reading acquisition, suggesting their causal involvement in later reading impairments. Increased response of left STC to incongruent LS pairs in FHD− group might reflect an early stage of automatizing LS associations, where the brain responds actively to conflicting pairs. The absence of such response in FHD+ children could lead to failures in suppressing incongruent information during reading acquisition, which could result in future reading problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.