Over the last years the role of fungal endophytes in plant biology has been extensively studied. A number of species were shown to positively affect plant growth and fitness, thus attempts have been made to utilize these microorganisms in agriculture and phytoremediation. Plant-fungi symbiosis requires multiple metabolic adjustments of both of the interacting organisms. The mechanisms of these adaptations are mostly unknown, however, plant hormones seem to play a central role in this process. The plant hormone strigolactone (SL) was previously shown to activate hyphae branching of mycorrhizal fungi and to negatively affect pathogenic fungi growth. Its role in the plant–endophytic fungi interaction is unknown. The effect of the synthetic SL analog GR24 on the endophytic fungi Mucor sp. growth, respiration, H2O2 production and the activity of antioxidant enzymes was evaluated. We found fungi colony growth rate was decreased in a GR24 concentration dependent manner. Additionally, the fungi accumulated more H2O2 what was accompanied by an altered activity of antioxidant enzymes. Symbiosis with Mucor sp. positively affected Arabidopsis thaliana growth, but SL was necessary for the establishment of the beneficial interaction. A. thaliana biosynthesis mutants max1 and max4, but not the SL signaling mutant max2 did not develop the beneficial phenotype. The negative growth response was correlated with alterations in SA homeostasis and a significant upregulation of genes encoding selected plant defensins. The fungi were also shown to be able to decompose SL in planta and to downregulate the expression of SL biosynthesis genes. Additionally, we have shown that GR24 treatment with a dose of 1 μM activates the production of SA in A. thaliana. The results presented here provide evidence for a role of SL in the plant–endophyte cross-talk during the mutualistic interaction between Arabidopsis thaliana and Mucor sp.
The contamination of soil with toxic metals is a worldwide problem, resulting in the disruption of plant vegetation and subsequent crop production. Thus, remediation techniques for contaminated soil and water remain a constant interest of researchers. Phytoremediation, which utilizes plants to remove or stabilize contaminants, is perceived to be a promising strategy. However, phytoremediation’s use to date is limited because of constraints associated with such factors as slow plant growth rates or metal toxicity. Microbial-assisted phytoremediation serves as an alternative solution, since the impact of the microbial symbionts on plant growth and stress tolerance has frequently been described. Endophytic fungi occur in almost every plant in the natural environment and contribute to plant growth and tolerance to environmental stress conditions. Although this group of symbiotic fungi was found to form association with a wide range of hosts, including the non-mycorrhizal Brassicaceae metallophytes, their role in the response of plants to metal toxicity has not been thoroughly elucidated to date. This review summarizes the current knowledge regarding the role of endophytic fungi in the tolerance of plants to toxic metals and highlights the similarities and differences between this group of symbiotic fungi and mycorrhizal associations in terms of the survival of the plant during heavy metal stress.
The aim of this study was to assess the biodiversity of endophytic fungi from Arabidopsis arenosa growing on a post mining waste dump and to evaluate their role in plant adaptation to metal toxicity. Severeal of the fungi were beneficial for the plant. Among them, a fungus belonging to the Mucor genus, was found to interact with a broad range of plants, including Brassicaceae metallophytes. Mucor sp. was shown to be highly tolerant to elevated levels of Zn, Cd, and Pb and to accelerate plant‐host growth under either toxic‐metal stress or control conditions. When inoculated with Mucor sp., A. arenosa under toxic‐metal stress acquired more N and showed significantly down‐regulated catalase activity, which suggests suppression of toxic‐metal‐induced oxidative stress. We used the model plant‐A. thaliana to evaluate the dynamics of plant‐tissue colonization by the fungus as monitored with qPCR and to analyze the host's transcriptome response during early stages of the interaction. The results revealed the induction of a plant‐defense and stress‐related response on the 5th day of co‐culture, which was in accord with the decrease of fungal abundance in shoots on the 6th day of interaction. Presented results demonstrate the importance of endophytic fungi in plant toxic‐metal tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.