We describe the fabrication of dual-responsive (thermo/ light) chiral plasmonic films. The idea is based on using photoswitchable achiral liquid crystal (LCs) forming chiral nanotubes for templating helical assemblies of Au NPs. Circular dichroism spectroscopy (CD) confirms chiroptical properties coming from the arrangement of organic and inorganic components, with up to 0.2 dissymmetry factor (g-factor). Upon exposure to UV light, organic molecules isomerize, resulting in controlled melting of organic nanotubes and/or inorganic nanohelices. The process can be reversed using visible light and further modified by varying the temperature, offering a control of chiroptical response of the composite material. These properties can play a key role in the future development of chiral plasmonics, metamaterials, and optoelectronic devices.
Achieving remotely controlled, reversibly reconfigurable assemblies of plasmonic nanoparticles is a prerequisite for the development of future photonic technologies. Here, we obtained a series of gold-nanoparticle-based materials which exhibit long-range order, and which are controlled with light or thermal stimuli. The influence of the metallic core size and organic shell composition on the switchability is considered, with emphasis on achieving light-responsive behavior at room temperature and high yield production of nanoparticles. The latter translates to a wide size distribution of metallic cores but does not prevent their assembly into various, switchable 3D and 2D long-range ordered structures. These results provide clear guidelines as to the impact of size, size distribution, and organic shell composition on self-assembly, thus enhancing the smart design process of multi-responsive nanomaterials in a condensed state, hardly attainable by other self-assembly methods which usually require solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.