BackgroundThe plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and several binding proteins, which together control the temporal and spatial generation of the active serine protease plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-proteolytic members of this system are scarce.ResultsOur phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the urokinase-type plasminogen activator receptor (uPAR)—and three-LU domain containing genes in general—occurred later in evolution and was first detectable after coelacanths.ConclusionsThis study identifies several primitive orthologues of the mammalian plasminogen activation system. These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of several members—hitherto unknown in mammals—provide new perspectives on the evolution of this important enzyme system.Electronic supplementary materialThe online version of this article (10.1186/s12862-019-1353-z) contains supplementary material, which is available to authorized users.
During the adaptive evolution of a particular trait, some selectively fixed mutations may be directly causative and others may be purely compensatory. The relative contribution of these two classes of mutation to adaptive phenotypic evolution depends on the form and prevalence of mutational pleiotropy. To investigate the nature of adaptive substitutions and their pleiotropic effects, we used a protein engineering approach to characterize the molecular basis of hemoglobin (Hb) adaptation in the high-flying bar-headed goose (Anser indicus), a hypoxia-tolerant species renowned for its trans-Himalayan migratory flights. To test the effects of observed substitutions on evolutionarily relevant genetic backgrounds, we synthesized all possible genotypic intermediates in the line of descent connecting the wildtype bar-headed goose genotype with the most recent common ancestor of bar-headed goose and its lowland relatives. Site-directed mutagenesis experiments revealed one major-effect mutation that significantly increased Hb-O2 affinity on all possible genetic backgrounds. Two other mutations exhibited smaller average effect sizes and less additivity across backgrounds. One of the latter mutations produced a concomitant increase in the autoxidation rate, a deleterious side-effect that was fully compensated by a second-site mutation at a spatially proximal residue. The experiments revealed three key insights: (i) subtle, localized structural changes can produce large functional effects; (ii) relative effect sizes of function-altering mutations may depend on the sequential order in which they occur; and (iii) compensation of deleterious pleiotropic effects may play an important role in the adaptive evolution of protein function.
The high blood-O affinity of the bar-headed goose () is an integral component of the biochemical and physiological adaptations that allow this hypoxia-tolerant species to undertake migratory flights over the Himalayas. The high blood-O affinity of this species was originally attributed to a single amino acid substitution of the major hemoglobin (Hb) isoform, HbA, which was thought to destabilize the low-affinity T state, thereby shifting the T-R allosteric equilibrium towards the high-affinity R state. Surprisingly, this mechanistic hypothesis has never been addressed using native proteins purified from blood. Here, we report a detailed analysis of O equilibria and kinetics of native major HbA and minor HbD isoforms from bar-headed goose and greylag goose (), a strictly lowland species, to identify and characterize the mechanistic basis for the adaptive change in Hb function. We find that HbA and HbD of bar-headed goose have consistently higher O affinities than those of the greylag goose. The corresponding Hb isoforms of the two species are equally responsive to physiological allosteric cofactors and have similar Bohr effects. Thermodynamic analyses of O equilibrium curves according to the two-state Monod-Wyman-Changeaux model revealed higher R-state O affinities in the bar-headed goose Hbs, associated with lower O dissociation rates, compared with the greylag goose. Conversely, the T state was not destabilized and the T-R allosteric equilibrium was unaltered in bar-headed goose Hbs. The physiological implication of these results is that increased R-state affinity allows for enhanced O saturation in the lungs during hypoxia, but without impairing O delivery to tissues.
Multidomain proteins often interact through several independent binding sites connected by disordered linkers. The architecture of such linkers affect avidity by modulating the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.